Browse > Article
http://dx.doi.org/10.4014/jmb.1302.02062

Sugarcane Bagasse Hydrolysis Using Yeast Cellulolytic Enzymes  

de Souza, Angelica Cristina (Department of Biology, Federal University of Lavras (UFLA), Campus Universitario)
Carvalho, Fernanda Paula (Department of Biology, Federal University of Lavras (UFLA), Campus Universitario)
Silva e Batista, Cristina Ferreira (Department of Biology, Federal University of Lavras (UFLA), Campus Universitario)
Schwan, Rosane Freitas (Department of Biology, Federal University of Lavras (UFLA), Campus Universitario)
Dias, Disney Ribeiro (Department of Food Science, Federal University of Lavras (UFLA), Campus Universitario)
Publication Information
Journal of Microbiology and Biotechnology / v.23, no.10, 2013 , pp. 1403-1412 More about this Journal
Abstract
Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with $H_2SO_4$. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant ${\beta}$-glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% $H_2SO_4$ for 30 min at $150^{\circ}C$. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good ${\beta}$-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production.
Keywords
Cryptococcus laurentii; yeasts; second-generation ethanol; bioethanol; Cerrado; Amazon region;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Biely P, Kremnicky L. 1998. Yeasts degrading cellulose, hemicelluloses and pectin. Food Technol. Biotechnol. 36: 305-312.
2 Alvira P, Tomas-Pejo E, Ballesteros M, Negro MJ. 2010. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101: 4851-4861.   DOI   ScienceOn
3 Asha BM, Revathi M, Yadav A, Sakthivel N. 2012. Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. J. Microbiol. Biotechnol. 22: 1501-1509.   DOI   ScienceOn
4 Biely P, Vrsanska M, Kratky Z. 1980. Xylan-degrading enzymes of the yeast Cryptococcus albidus: identification and cellular localization. Eur. J. Biochem. 108: 313-321.   DOI   ScienceOn
5 Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 7: 248-254.
6 Cai BY, Ge JP, Ling HZ, KK Cheng, Ping WX. 2012. Statistical optimization of dilute sulphuric acid pre-treatment of corncob for xylose recovery and ethanol production. Biomass Bioenerg. 36: 250-257.   DOI   ScienceOn
7 Cardona CA, Quintero JA, Paz IC. 2010. Production of bioethanol from sugarcane bagasse: status and perspectives. Bioresour. Technol. 101: 4754-4766.   DOI   ScienceOn
8 Dias DR, Schwan RF. 2010. Isolamento e identificacao de leveduras, pp. 227-277. In Moreira FMS, Huising EJ, Bignell DE (eds.). Manual de biologia dos solos tropicais: amostragem e caracterizacao da biodiversidade. UFLA, Lavras, BR.
9 Duarte WF, Pereira GVM, Gervasio IM, Schwan RF. 2009. Indigenous and inoculated yeast fermentation of gabiroba (Campomanesia pubescens) pulp for fruit wine production. J. Ind. Microbiol. Biotechnol. 36: 557-569.   DOI   ScienceOn
10 Job J, Sukumaran RK, Jayachandran K. 2010. Production of a highly glucose tolerant ${\beta}$-glucosidase by Paecilomyces variotii MG3: optimization of fermentation conditions using Plackett-Burman and Box-Behnken experimental designs. World J. Microbiol. Biotechnol. 26: 1385-1391.   DOI
11 Ferreira DF. 2008. Sisvar: um programa para analises e ensino de estatistica. Rev. Sympos. 6: 36-41.
12 Iefuji H, Chino M, Kato M, Iimura Y. 1996. Acid xylanase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning, and sequencing. Biosci. Biotechnol. Biochem. 60: 1331-1338.   DOI   ScienceOn
13 Iefuji H, Chino M, Kato M, Iimura Y. 1996. Raw-starch-digesting and thermostable ${\alpha}$-amylase from the yeast Cryptococcus sp. S-2: purification characterization, cloning and sequencing. Biochem. J. 318: 989-996.   DOI
14 Jorgensen H, Kristensen JB, Felby C. 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuel Bioprod. Bioref. 1: 119-134.   DOI
15 Lima AS, Nobrega RSA, Barberi A, Silva K, Ferreira DF, Moreira FMS. 2009. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpurreum). Plant Soil 319: 127-145.   DOI
16 Kanti A, Sudiana IM. 2002. Cellulolytic yeast isolated from soil from Gunung Halimun National Park (West Java, Indonesia). Berita Biol. 6: 85-90.
17 Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. 2008. A rapid and easy method for the detection of microbial cellulose on agar plates using gram's iodine. Curr. Microbiol. 57: 503-507.   DOI   ScienceOn
18 Lever M. 1972. A new reaction for colorimetric determination of carbohydrates. Anal. Biochem. 47: 273-279.   DOI   ScienceOn
19 Leite RSR, Bocchini DA, Martins ES, Silva D, Gomes E, Silva R. 2007. Production of cellulolytic and hemicellulolytic enzymes from Aureobasidium pullulans on solid state fermentation. Appl. Biochem. Biotechnol. 136-140: 281-288.
20 Liu D, Zhang R, Yang X, Hongsheng W, Xu D, Zhu T, et al. 2011. Thermostable cellulose production of Aspergillus fumigates Z5 under solid-state fermentation and its application in the degradation of agricultural wastes. Int. Biodeterior. Biodegrad. 65: 717-725.   DOI   ScienceOn
21 Lin Y, Tanaka S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69: 627-642.   DOI   ScienceOn
22 Martín C, Galbe M, Nilvebrant NO, Jonsson LJ. 2002. Comparison of the fermentability of enzymatic hydrolyzates of sugarcane bagasse pre-treated by steam explosion using different impregnating agents. Appl. Biochem. Biotechnol. 98-100: 699-616.   DOI   ScienceOn
23 Moreira FMS, Nobrega RSA, Jesus EC, Ferreira DF, Perez DV. 2009. Differentiation in the fertility of inceptisols as related to land use in the upper Solimoes river region, western Amazon. Sci. Total Environ. 408: 349-355.   DOI   ScienceOn
24 Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, et al. 2005. Features of promising technologies for treatment of lignocellulosic biomass. Bioresour. Technol. 96: 673-686.   DOI   ScienceOn
25 Palmqvist E, Hahn-Hagerdal BH. 2000. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour. Technol. 74: 17-24.   DOI   ScienceOn
26 Oliveira MES, Pantoja L, Duarte WF, Collela CF, Valarelli LT, Schwan RF, et al. 2011. Fruit wine produced from cagaita (Eugenia dysenterica DC) by both free and immobilised yeast cell fermentation. Food Res. Int. 44: 2391-2400.   DOI   ScienceOn
27 Olsson L, Hahn-Hagerdal BH. 1996. Fermentation of lignocellulosic hydrolysates for ethanol production. Enzyme Microb. Technol. 18: 312-331.   DOI   ScienceOn
28 Pothiraj C, Balaji P, Eyini M. 2006. Enhanced production of cellulases by various fungal cultures in solid-state fermentation of cassava waste. Afr. J. Biotechnol. 5: 1882-1885.
29 Pandey A, Soccol CR, Nigam P, Soccol VT. 2000. Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour. Technol. 74: 69-80.   DOI   ScienceOn
30 Parachin NS, Siqueira S, de Faria FP, Torres FAG, Moraes LMP. 2009. Xylanase from Cryptococcus flavus isolate I-11: enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. J. Mol. Catal. B Enzym. 59: 52-57.   DOI   ScienceOn
31 Ramos CL, Almeida EG, Pereira GVM, Cardoso PG, Dias ES, Schwan RF. 2010. Determination of dynamic characteristics of microbiota in a fermented beverage produced by Brazilian Amerindians using culture-dependent and culture-independent methods. Int. J. Food Microbiol. 140: 225-231.   DOI   ScienceOn
32 Saha BC, Iten LB, Cotta MA, Wu YV. 2005. Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40: 3693-3700.   DOI   ScienceOn
33 Santos VTO, Esteves PJ, Milagres AMF, Carvalho W. 2011. Characterization of commercial cellulases and their use in the saccharification of a sugarcane bagasse sample pre-treated with dilute sulphuric acid. J. Ind. Microbiol. Biotechnol. 38: 1089-1098.   DOI   ScienceOn
34 Slavikova E, Kosikova B, Mikulasova M. 2002. Biotransformation of waste lignin products by the soil-inhabiting yeast Trichosporon pullulans. Can. J. Microbiol. 48: 200-203.   DOI   ScienceOn
35 Slavikova E, Vadkertiova R. 2000. The occurrence of yeast in the forest soil. J. Basic Microbiol. 40: 207-212.   DOI   ScienceOn
36 Sun Y, Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11.   DOI   ScienceOn
37 Slavikova E, Vadkertiova R. 2003. The diversity of yeast in the agricultural soil. J. Basic Microbiol. 43: 430-436.   DOI   ScienceOn
38 Sukumaran RK, Singhania RR, Mathew GM, Pandey A. 2009. Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energ. 34: 421-424.   DOI   ScienceOn
39 Talebnia F, Karakashev D, Angelidak I. 2010. Production of bioethanol from wheat straw: an overview on pre-treatment, hydrolysis and fermentation. Bioresour. Technol. 101: 4744-4753.   DOI   ScienceOn
40 Thongekkaew J, Ikeda H, Masaki K, Lefuji H. 2008. An acidic and thermostable carboxymethyl cellulase from the yeast Cryptococcus sp. S-2: purification, characterization and improvement of its recombinant enzyme production by high cell-density fermentation of Pichia pastoris. Protein Express. Purif. 60: 140-146.   DOI   ScienceOn
41 Tian S, Zhou G, Yan F, Yu Y, Yang X. 2009. Yeast strains for ethanol production from lignocellulosic hydrolysates during in situ detoxification. Biotechnol. Adv. 27: 656-670.   DOI   ScienceOn
42 Van Soest PJ. 1967. Development of a comprehensive system of feed analysis and its application to forages. J. Anim. Sci. 26: 119-128.   DOI
43 Van Staden J, den Haan H, van Zyl WH, Botha A, Viljoen-Bloom M. 2007. Phytase activity in Cryptococcus laurentii ABO510. FEMS Yeast Res. 7: 442-448.   DOI   ScienceOn
44 Zhang L, Liu Y, Niu X, Liu Y, Liao W. 2012. Effects of acid and alkali treated lignocellulosic materials on cellulase/xylanase production by Trichoderma reesei Rut C-30 and corresponding enzymatic hydrolysis. Biomass Bioenergy 37: 16-24.   DOI   ScienceOn
45 Zhang YHP, Himmel ME, Mielenz JR. 2006. Outlook for cellulose improvement: screening and selection strategies. Biotechnol. Adv. 24: 452-481.   DOI   ScienceOn
46 Vital MJS, Abranches J, Hagler AN, Mendonca-Hagler LC. 2002. Mycocinogenic yeasts isolated from Amazon soils of the Maraca Ecological Station, Roraima-Brazil. Braz. J. Microbiol. 3: 230-235.
47 Wanderley KJ, Torres FAG, Moraes LMP, Ulhoa CJ. 2004. Biochemical characterization of ${\alpha}$-amylase from the yeast Cryptococcus flavus. FEMS Microbiol. Lett. 231: 165-169.   DOI   ScienceOn