Browse > Article
http://dx.doi.org/10.5713/ajas.15.0053

Potential of Using Maize Cobs in Pig Diets - A Review  

Kanengoni, A.T. (Agricultural Research Council-Animal Production Institute)
Chimonyo, M. (Discipline of Animal and Poultry Sciences, University of KwaZulu-Natal)
Ndimba, B.K. (Agricultural Research Council, Proteomics Research and Services Unit, Infruitech-Nietvoorbij Institute, Department of Biotechnology, University of the Western Cape)
Dzama, K. (Department of Animal Sciences, Stellenbosch University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.12, 2015 , pp. 1669-1679 More about this Journal
Abstract
The quest to broaden the narrow range of feed ingredients available to pig producers has prompted research on the use of low cost, unconventional feedstuffs, which are typically fibrous and abundant. Maize cobs, a by-product of a major cereal grown worldwide, have potential to be used as a pig feed ingredient. Presently, maize cobs are either dumped or burnt for fuel. The major challenge in using maize cobs in pig diets is their lignocellulosic nature (45% to 55% cellulose, 25% to 35% hemicellulose, and 20% to 30% lignin) which is resistant to pigs' digestive enzymes. The high fiber in maize cobs (930 g neutral detergent fiber/kg dry matter [DM]; 573 g acid detergent fiber/kg DM) increases rate of passage and sequestration of nutrients in the fiber reducing their digestion. However, grinding, heating and fermentation can modify the structure of the fibrous components in the maize cobs and improve their utilization. Pigs can also extract up to 25% of energy maintenance requirements from fermentation products. In addition, dietary fiber improves pig intestinal health by promoting the growth of lactic acid bacteria, which suppress proliferation of pathogenic bacteria in the intestines. This paper reviews maize cob composition and the effect on digestibility of nutrients, intestinal microflora and growth performance and proposes the use of ensiling using exogenous enzymes to enhance utilization in diets of pigs.
Keywords
Ensiling; Exogenous Enzymes; Lignocellulose; Dietary Fiber; Maize Cobs;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Fevrier, C., D. Bourdon, and A. Aumaitre. 1992. Effects of level of dietary fibre from wheat bran on digestibility of nutrients, digestive enzymes and performance in the European Large White and Chinese Mei Shan pig. J. Anim. Physiol. Anim. Nutr. (Berl). 68:60-72.   DOI
2 Frank, G. R., F. X. Aherne, and A. H. Jensen. 1983. A study of the relationship between performance and dietary component digestibilities by swine fed different levels of dietary fiber. J. Anim. Sci. 57:645-654.   DOI
3 Gatel, F., F. Grosjean, and J. Castaing. 1988. Feeding value of ensiled high-moisture maize grain with cob for growingfinishing pigs. Anim. Feed Sci. Technol. 20:145-153.   DOI
4 Guilloteau, P., L. Martin, V. Eeckhaut, R. Ducatelle, R. Zabielski, and F. Van Immerseel. 2010. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr. Res. Rev. 23:366-384.   DOI
5 Huang, Q., Y. B. Su, D. F. Li, L. Liu, C. F. Huang, Z. P. Zhu, and C. H. Lai. 2015. Effects of inclusion levels of wheat bran and body weight on ileal and fecal digestibility in growing pigs. Asian Australas. J. Anim. Sci. 28:847-854.   DOI
6 Igathinathane, C., A. R. Womac, S. Sokhansanj, and L. O. Pordesimo, 2005. Sorption equilibrium moisture characteristics of selected corn stover components. Trans. ASAE 48:1449-1460.   DOI
7 Jin, L., L. P. Reynolds, D. A. Redmer, J. S. Caton, and J. D. Crenshaw. 1994. Effects of dietary fiber on intestinal growth, cell proliferation, and morphology in growing pigs. J. Anim. Sci. 72:2270-2278.   DOI
8 Jones, C. K., J. R. Bergstrom, M. D. Tokach, J. M. DeRouchey, R. D. Goodband, J. L. Nelssen, and S. S. Dritz. 2010. Efficacy of commercial enzymes in diets containing various concentrations and sources of dried distillers grains with solubles for nursery pigs. J. Anim. Sci. 88:2084-2091.   DOI
9 Latif, F. and M. I. Rajoka. 2001. Production of ethanol and xylitol from corn cobs by yeasts. Bioresour. Technol. 77:57-63.   DOI
10 Le Gall, M., M. Warpechowski, Y. Jaguelin-Peyraud, and J. Noblet. 2009. Influence of dietary fibre level and pelleting on the digestibility of energy and nutrients in growing pigs and adult sows. Animal 3:352-359.   DOI
11 Mashatise, E., H. Hamudikuwanda, K. Dzama, M. Chimonyo, and A. Kanengoni. 2005. Effects of corn cob-based diets on the levels of nutritionally related blood, metabolites and onset of puberty in Mukota and Landrace$\times$Mukota gilts. Asian Australas. J. Anim. Sci. 18:1469-1474.   DOI
12 McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The Biochemistry of Silage. Chalcombe Publications, Marlow, Buckinghamshire, UK. p. 109.
13 Meeske, R., H. M. Basson, and C. W. Cruywagen, 1999. The effect of a lactic acid bacterial inoculant with enzymes on the fermentation dynamics, intake and digestibility of Digitaria eriantha silage. Anim. Feed Sci. Technol. 81:237-248.   DOI
14 Menon, V. and M. Rao. 2012. Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog. Energy Combust. Sci. 38:522-550.   DOI
15 Metzler, B. U. and R. Mosenthin. 2008. A review of interactions between dietary fiber and the gastrointestinal microbiota and their consequences on intestinal phosphorus metabolism in growing pigs. Asian Australas. J. Anim. Sci. 21:603-615.   DOI
16 Millet, S., K. Raes, S. De Smet, and G. P. J. Janssens. 2005. Evaluation of corn cob mix in organic finishing pig nutrition. J. Sci. Food Agric. 85:1543-1549.   DOI
17 Stanogias, G. and G. R. Pearce. 1985c. The digestion of fibre by pigs. 3. Effects of the amount and type of fibre on physical characteristics of segments of the gastrointestinal tract. Br. J. Nutr. 53:537-548.   DOI
18 Shirazi-Beechey, S. P., A. W. Moran, D. Bravo, and M. Al- Rammahi. 2011. Nonruminant Nutrition Symposium: intestinal glucose sensing and regulation of glucose absorption: implications for swine nutrition. J. Anim. Sci. 89:1854-1862.   DOI
19 Stanogias, G. and G. R. Pearce. 1985a. The digestion of fibre by pigs. 1. The effects of amount and type of fibre on apparent digestibility, nitrogen balance and rate of passage. Br. J. Nutr. 53:513-530.   DOI
20 Stanogias, G. and G. R. Pearce. 1985b. The digestion of fibre by pigs. 2. Volatile fatty acid concentrations in large intestine digesta. Br. J. Nutr. 53:531-536.   DOI
21 Szyszkowska, A., J. Sowiński, and H. Wierzbicki. 2007. Changes in the chemical composition of maize cobs depending on the cultivar, effective temperature sum and farm type. Acta Sci. Pol. Agric. 6:13-22.
22 Tuah, A. and E. Orskov. 1989. The degradation of untreated and treated maize cobs and cocoa pod husks in the rumen. Proc. of the 4th Ann. Workshop held at the Institute of Animal Research, Mankon Station, Bamenda, Cameroun, 20-27 October 1987 entitled, Overcoming constraints to the efficient utilization of agricultural by-products as animal feed. Food and Agriculture Organization of the United Nations. http://www.fao.org/wairdocs/ilri/x5490e/x5490e0t.htm. Accessed February 21, 2011.
23 Tungland, B. C. and D. Meyer. 2002. Nondigestible oligo- and polysaccharides (dietary fiber): Their physiology and role in human health and food. Compr. Rev. Food Sci. Food Saf. 1:90-109.   DOI
24 Appeldoorn, M. M., M. A. Kabel, D. Van Eylen, H. Gruppen, and H. A. Schols. 2010. Characterization of oligomeric xylan structures from corn fiber resistant to pretreatment and simultaneous saccharification and fermentation. J. Agric. Food Chem. 58:11294-11301.   DOI
25 Akinfemi, A. 2010. Nutritive value and in vitro gas production of fungal treated maize cobs. Afr. J. Food Agric. Nutr. Dev. 10: 2943-2955.
26 Anugwa, F. O. I., V. H. Varel, J. S. Dickson, W. G. Pond, and L. P. Krook. 1989. Effects of dietary fiber and protein concentration on growth, feed efficiency, visceral organ weights and large intestine microbial populations of swine. J. Nutr. 119:879-886.   DOI
27 Apajalahti, J., A. Kettunen, and H. Graham. 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. Worlds Poult. Sci. J. 60:223-232.   DOI
28 Apajalahti, J. H. A., A. Kettunen, M. R. Bedford, and W. E. Holben. 2001. Percent G+C profiling accurately reveals dietrelated differences in the gastrointestinal microbial community of broiler chickens. Appl. Environ. Microbiol. 67:5656-5667.   DOI
29 Appeldoorn, M. M., P. de Waard, M. A. Kabel, H. Gruppen, and H. A. Schols. 2013. Enzyme resistant feruloylated xylooligomer analogues from thermochemically treated corn fiber contain large side chains, ethyl glycosides and novel sites of acetylation. Carbhydr. Res. 381:33-42.   DOI
30 Ashbell, G., Z. G. Weinberg, A. Azrieli, Y. Hen, and B. Horev. 1991. A simple system to study the aerobic determination of silages. Can. Agric. Eng. 33:391-393.
31 Barletta, A. 2010. Introduction: current market and expected developments. In: Enzymes in Farm Animal Nutrition. 2nd ed. (Eds. M. R. Bedford and G. G. Partridge). CAB International. London, UK. pp. 1-11.
32 Bedford, M. R. 2000. Exogenous enzymes in monogastric nutrition: their current value and future benefits. Anim. Feed Sci. Technol. 86:1-13.   DOI
33 Brunsgaard, G. 1998. Effects of cereal type and feed particle size on morphological characteristics, epithelial cell proliferation, and lectin binding patterns in the large intestine of pigs. J. Anim. Sci. 76:2787-2798.   DOI
34 Bolsen, K. K., G. Ashbell, and Z. G. Weinberg. 1996. Silage fermentation and silage additives: review. Asian Australas. J. Anim. Sci. 9:483-493.   DOI
35 Bozovic, I., M. Radosavljevic, S. Zilic, and R. Jovanovic. 2004. A genetic base of utilization of maize cob as a valuable naturally renewable raw material. Genetika 36:245-256.   DOI
36 Bredon, R. M., P. G. Stewart, and T. J. Dugmore. 1987. A Manual on the Nutritive Value and Chemical Composition of Commonly Used South African Farm Feeds. Department of Agriculture and Water Supply, Natal Region, South Africa.
37 Canibe, N. and K. E. Bach Knudsen. 2002. Degradation and physicochemical changes of barley and pea fiber along the gastrointestinal tract of pigs. J. Sci. Food Agric. 82:27-39.   DOI
38 Chesson, A. 1993. Feed enzymes. Anim. Feed Sci. Technol. 45:65-79.   DOI
39 Chimonyo, M., E. Bhebhe, K. Dzama, T. E. Halimani, and A. Kanengoni. 2005. Improving smallholder pig production for food security and livelihood of the poor in Southern Africa. Afr. Crop Sci. Conf. Proc. 7:569-573.
40 Chimonyo, M., A. T. Kanengoni, and K. Dzama. 2001. Influence of maize cob inclusion level in pig diets on growth performance and carcass traits of Mukota $\times$ Large White $F_1$ crossbred male pigs. Asian Australas. J. Anim. Sci. 14:1724-1727.   DOI
41 De Vries, S., A. M. Pustjens, H. A. Schols, W. H. Hendriks, and W. J. J. Gerrits. 2012. Improving digestive utilization of fiber-rich feedstuffs in pigs and poultry by processing and enzyme technologies: a review. Anim. Feed Sci. Technol. 178:123-138.   DOI
42 Colombatto, D., F. L. Mould, M. K. Bhat, R. H. Phipps, and E. Owen. 2004. In vitro evaluation of fibrolytic enzymes as additives for maize (Zea mays L.) silage: II. Effects on rate of acidification, fibre degradation during ensiling and rumen fermentation. Anim. Feed Sci. Technol. 111:129-143.   DOI
43 Deutschmann, R. and R. F. H. Dekker. 2012. From plant biomass to bio-based chemicals: latest developments in xylan research. Biotechnol. Adv. 30:1627-1640.   DOI
44 De Vries, S., A. M. Pustjens, M. A. Kabel, R. P. Kwakkel, and W. J. J. Gerrits. 2014. Effects of processing technologies and pectolytic enzymes on degradability of nonstarch polysaccharides from rapeseed meal in broilers. Poult. Sci. 93:589-598.   DOI
45 Donnelly, B. J., J. L. Helm, and H. A. Lee. 1973. The carbohydrate composition of corn cob hemicelluloses. Cereal Chem. 50:548-552.
46 Ebringerova, A. and T. Heinze. 2000. Xylan and xylan derivatives: biopolymers with valuable properties, 1. Naturally occurring xylans structures, isolation procedures and properties. Macromol. Rapid Commun. 21:542-556.   DOI
47 Ebringerova, A., Z. Hromadkova, and V. Hribalova. 1995. Structure and mitogenic activities of corn cob heteroxylans. Int. J. Biol. Macromol. 17:327-331.   DOI
48 FAO. 2012. FAOSTAT Crop production. FAOSTAT, FAO Statistics Division. http://faostat.fao.org/site/567/desktopdefault.aspx#ancor. Accessed December 28, 2012.
49 Kanengoni, A. T., K. Dzama, M. Chimonyo, J. Kusina, and S. M. Maswaure. 2002. Influence of level of maize cob meal on nutrient digestibility and nitrogen balance in Large White, Mukota and LW - $MF_1$ crossbred pigs. Anim. Sci. 74:127-134.
50 Kanengoni, A. T., K. Dzama, M. Chimonyo, J. Kusina, and S. M. Maswaure. 2004. Growth performance and carcass traits of Large White, Mukota and Large White $\times$ Mukota $F_1$ crosses given graded levels of maize cob meal. Anim. Sci. 78:61-66.
51 Kerr, B. J. and G. C. Shurson. 2013. Strategies to improve fiber utilization in swine. J. Anim. Sci. Biotechnol. 4:11.   DOI
52 Khan, M. A., Z. Iqbal, M. Sarwar, M. Nisa, M. S. Khan, W. S. Lee, H. J. Lee, and H. S. Kim. 2006. Urea treated corncobs ensiled with or without additives for buffaloes: ruminal characteristics, digestibility and nitrogen metabolism. Asian Australas. J. Anim. Sci. 19:705-712.   DOI
53 Kohn, R. A., M. M. Dinneen, and E. Russek-Cohen. 2005. Using blood urea nitrogen to predict nitrogen excretion and efficiency of nitrogen utilization in cattle, sheep, goats, horses, pigs, and rats. J. Anim. Sci. 83:879-889.   DOI
54 Kumar, S., Y. S. Negi, and J. S. Upadhyaya. 2010a. Studies on characterization of corn cob based nanoparticles. Adv. Mater. Lett. 1:246-253.   DOI
55 Kumar, S., J. S. Upadhyaya, and Y. S. Negi. 2010b. Preparation of nanoparticles from corn cobs by chemical treatment methods. BioResources 5:1292-1300.
56 Kung, L. Jr., A. C. Sheperd, A. M. Smagala, K. M. Endres, C. A. Bessett, N. K. Ranjit, and J. L. Glancey. 1998. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. J. Dairy Sci. 81:1322-1330.   DOI
57 Ndou, S. P., R. M. Gous, and M. Chimonyo. 2013. Prediction of scaled feed intake in weaner pigs using physico-chemical properties of fibrous feeds. Br. J. Nutr. 110:774-780.   DOI
58 Montagne, L., J. R. Pluske, and D. J. Hampson. 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young nonruminant animals. Anim. Feed Sci. Technol. 108:95-117.   DOI
59 Nangole, F. N., H. Kayongo-Male, and A. N. Said. 1983. Chemical composition, digestibility and feeding value of maize cobs. Anim. Feed Sci. Technol. 9:121-130.   DOI
60 Ndindana, W., K. Dzama, P. N. B. Ndiweni, S. M. Maswaure, and M. Chimonyo. 2002. Digestibility of high fibre diets and performance of growing Zimbabwean indigenous Mukota pigs and exotic Large White pigs fed maize based diets with graded levels of maize cobs. Anim. Feed Sci. Technol. 97:199-208.   DOI
61 Ndubuisi, E. C., F. C. Iheukwumere, and M. U. Onyekwere. 2008. The effect of varying dietary levels of maize cob meal on the growth and nutrient digestibility of grower pigs. Res. J. Anim. Sci. 2:100-102.
62 Nidup, K. and C. Moran. 2011. Genetic diversity of domestic pigs as revealed by microsatellites: a mini review. Genomics Quant. Genet. 2:5-18.
63 Nishiyama, Y., H. Hamada, S. Nonaka, H. Yamamoto, M. Nanno, Y. Katayama, H. Takahashi, and H. Ishikawa. 2002. Homeostatic regulation of intestinal villous epithelia by B lymphocytes. J. Immunol. 168:2626- 2633.   DOI
64 Omogbenigun, F. O., C. M. Nyachoti, and B. A. Slominski. 2004. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 82:1053-1061.   DOI
65 Van Nevel, C. J., N. A. Dierick, J. A. Decuypere, and S. M. De Smet. 2006. In vitro fermentability and physicochemical properties of fibre substrates and their effect on bacteriological and morphological characteristics of the gastrointestinal tract of newly weaned piglets. Arch. Anim. Nutr. 60:477-500.   DOI
66 Urio, N. A. and J. A. Katagile. 1987. Maize stover and cobs as a feed resource for ruminants in Tanzania. In: Proceedings of a workshop held at Ryall's Hotel, Blantyre, Malawi. pp. 37-44.
67 Urriola, P. E., G. C. Shurson, and H. H. Stein. 2010. Digestibility of dietary fiber in distillers coproducts fed to growing pigs. J. Anim. Sci. 88:2373-2381.   DOI
68 Urriola, P. E. and H. H. Stein. 2012. Comparative digestibility of energy and nutrients in fibrous feed ingredients fed to Meishan and Yorkshire pigs. J. Anim. Sci. 90:802-812.   DOI
69 Varel, V. H. and J. T. Yen. 1997. Microbial perspective on fiber utilization by swine. J. Anim. Sci. 75:2715-2722.   DOI
70 Varel, V. H. and W. G. Pond. 1985. Enumeration and activity of cellulolytic bacteria from gestating swine fed various levels of dietary fiber. Appl. Environ. Microbiol. 49:858-862.
71 Vazquez, M. J., J. L. Alonso, H. Domínguez, and J. C. Parajo. 2006. Enhancing the potential of oligosaccharides from corncob autohydrolysis as prebiotic food ingredients. Ind. Crops Prod. 24:152-159.   DOI
72 Viljoen, J. 1993. Feed sources: use and feed tables. In: Pig production in South Africa. Irene Animal Production Institute. Agricultural Research Council, Bulletin 427 (Ed. E.H. Kemm). Agricultural Research Council, Pretoria, pp 53.
73 Weber, T. E. and B. J. Kerr. 2012. Metabolic effects of dietary sugar beet pulp or wheat bran in growing female pigs. J. Anim. Sci. 90:523-532.   DOI
74 Pond, W. G., J. T. Yen, R. N. Lindvall, and D. Hill. 1980. Dietary alfalfa meal for genetically obese and lean growing pigs: effect on body weight gain and on carcass and gastrointestinal tract measurements and blood metabolites. J. Anim. Sci. 51:367-373.   DOI
75 Opeolu, B. O., O. Bamgbose, T. A. Arowolo, and M. T. Adetunji. 2009. Utilization of maize (Zea mays) cob as an adsorbent for lead (II) removal from aqueous solutions and industrial effluents. Afr. J. Biotechnol. 8:1567-1573.
76 Oviedo-Rondon, E. O., M. E. Hume, C. Hernandez, and S. Clemente-Hernandez. 2006. Intestinal microbial ecology of broilers vaccinated and challenged with mixed Eimeria species, and supplemented with essential oil blends. Poult. Sci. 85:854-860.   DOI
77 Pathak, B. S., A. K. Jain, and A. Singh. 1986. Characteristics of crop residues. Agric. Wastes 16:27-35.   DOI
78 Raheem, A. A. and D. A. Adesanya. 2011. A study of thermal conductivity of corn cob ash blended cement mortar. Pac. J. Sci. Technol. 12:106-111.
79 Rezaei, J., Y. Rouzbehan, and H. Fazaeli. 2009. Nutritive value of fresh and ensiled amaranth (Amaranthus hypochondriacus) treated with different levels of molasses. Anim. Feed Sci. Technol. 151:153-160.   DOI
80 Samanta, A. K., S. Senani, A. P. Kolte, M. Sridhar, K. T. Sampath, N. Jayapal, and A. Devi. 2012. Production and in vitro evaluation of xylooligosaccharides generated from corn cobs. Food Bioprod. Process. 90:466-474.   DOI
81 Scheller, H. V. and P. Ulvskov. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263-289.   DOI
82 Sheperd, A. C. and L. Jr. Kung. 1996. Effects of an enzyme additive on composition of corn silage ensiled at various stages of maturity. J. Dairy Sci. 79:1767-1773.   DOI
83 Zhang, M., F. Wang, R. Su, W. Qi, and Z. He. 2010. Ethanol production from high dry matter corncob using fed-batch simultaneous saccharification and fermentation after combined pretreatment. Bioresour. Technol. 101:4959-4964.   DOI
84 Wenk, C. 2001. The role of dietary fibre in the digestive physiology of the pig. Anim. Feed Sci. Technol. 90:21-33.   DOI
85 Xu, N., W. Zhang, S. Ren, F. Liu, C. Zhao, H. Liao, Z. Xu, J. Huang, Q. Li, Y. Tu, B. Yu, Y. Wang, J. Jiang, J. Qin, and L. Peng. 2012. Hemicelluloses negatively affect lignocellulose crystallinity for high biomass digestibility under NaOH and $H_2SO_4$ pretreatments in Miscanthus. Biotechnol. Biofuels 5:58.   DOI
86 Yen, J. T., J. A. Nienaber, D. A. Hill, and W. G. Pond. 1991. Potential contribution of absorbed volatile fatty acids to wholeanimal energy requirement in conscious swine. J. Anim. Sci. 69:2001-2012.   DOI
87 Ziemer, C. J., B. J. Kerr, T. E. Weber, S. Arcidiacono, M. Morrison, and A. Ragauskas. 2012. Effects of feeding fiber-fermenting bacteria to pigs on nutrient digestion, fecal output, and plasma energy metabolites. J. Anim. Sci. 90:4020-4027.   DOI