• Title/Summary/Keyword: Lignin degrading enzyme

Search Result 30, Processing Time 0.026 seconds

Effect of Nutrients on the Production of Extracellular Enzymes for Decolorization of Reactive Blue 19 and Reactive Black 5

  • Lee Yu-Ri;Park Chul-Hwan;Lee Byung-Hwan;Han Eun-Jung;Kim Tak-Hyun;Lee Jin-Won;Kim Sang-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.226-231
    • /
    • 2006
  • Several white-rot fungi are able to produce extracellular lignin-degrading enzymes such as manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase. In order to enhance the production of laccase and MnP using Trametes versicolor KCTC 16781 in suspension culture, the effects of major medium ingredients, such as carbon and nitrogen sources, on the production of the enzymes were investigated. The decolorization mechanism in terms of biodegradation and biosorption was also investigated. Among the carbon sources used, glucose showed the highest potential for the production of laccase and MnP. Ammonium tartrate was a good nitrogen source for the enzyme production. No significant difference in the laccase production was observed, when glucose concentration was varied between 5 g/l and 30 g/l. As the concentration of nitrogen source increased, a lower MnP activity was observed. The optimal C/N ratio was 25 for the production of laccase and MnP. When the concentrations of glucose and ammonium tartrate were simultaneously increased, the laccase and MnP activities increased dramatically. The maximum laccase and MnP activities were 33.7 U/ml at 72 h and 475 U/ml at 96 h, respectively, in the optimal condition. In this condition, over 90% decolorization efficiency was observed.

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y.;McAllister, T.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.11
    • /
    • pp.1659-1676
    • /
    • 2002
  • Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production (II) - Laccase Production by Lignin-Degrading Fungi - (리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價) (II) - 리그닌분해균(分解菌)에 의한 laccase 생산(生産) -)

  • Jung, Hyeun-Chae;Park, Seur-Kee;Kim, Byeong-Soo;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 1996
  • 리그닌분해능(分解能)이 높은 균주(菌株)로 선발(選拔)된 Coriolus versicolor-13 (CV-13), LKY-7 및 LKY-12세 균주(菌株)에 대하여 균체외(菌體外) laccase 생산(生産)을 검토(檢討)하였다. Glucose-peptone broth에서 균체외(菌體外) laccase활성(活性)은 CV-13의 경우 3일 이상배양후(以上培養後)에 나타났고 LKY-7과 LKY-12균주(菌株)의 laccase 활성(活性)은 배양(培養) 2일째에 검출(檢出)되었다. 탄소원(炭素源)으로서는 maltose가 glucose와 비슷한 laccase 생산효과(生産效果)를 나타냈고 질소원(窒素源)으로서는 유기태질소(有機態窒素)가 무기태(無機態) 질소(窒素)보다 효과적(效果的)이었다. Laccase 유도물질(誘導物質)로서는 2,5-Xylidine이 가장 우수하였으며 1mM 이하(以下)의 농도(濃度)에서는 유도효과(誘導效果)가 크게 나타났으나 1.5mM 이상(以上)의 농도(濃度)에서는 laccase생산(生産)이 억제(抑制)되었고, 균사생장(菌絲生長) 초기(初期)에 첨가(添加)하는 것이 효과적(效果的)으로 나타났다. SDS-PAGE 후, CV-13 균주(菌株)의 균체외(菌體外) 단백질(蛋白質)에서는 약 69, 66, 25, 23, 19kDa 크기의 laccase band가 5개 나타났고 LKY-7 균주(菌株)에서는 27kDa과 19kDa 크기의 2개 band가, LKY-12 균주(菌株)에서는 22, 20, 17kDa 크기의 laccase band가 3개 나타났다.

  • PDF

Draft genome sequence of humic substance-degrading Pseudomonas sp. PAMC 29040 from Antarctic tundra soil (천연 복합유기화합물인 부식질을 분해하는 남극 툰드라 토양 Pseudomonas sp. PAMC 29040의 유전체 분석)

  • Kim, Dockyu;Lee, Hyoungseok
    • Korean Journal of Microbiology
    • /
    • v.55 no.1
    • /
    • pp.83-85
    • /
    • 2019
  • Pseudomonas sp. PAMC 29040 was isolated from a maritime tundra soil in Antarctica for its ability to degrade lignin and subsequently confirmed to be able to depolymerize heterogeneous humic substance (HS), a main component of soil organic matter. The draft genome sequences of PAMC 29040 were analyzed to discover the putative genes for depolymerization of polymeric HS (e.g., dye-decolorizing peroxidase) and catabolic degradation of HS-derived small aromatics (e.g., vanillate O-demethylase). The information on degradative genes will be used to finally propose the HS degradation pathway(s) of soil bacteria inhabiting cold environments.

Screening and production of lignocellulolytic enzymes secreted by the edible basidiomycete Pleurotus ostreatus (느타리로부터 리그닌-셀룰로오스분해효소 생산 균주 선발 및 효소 생산)

  • Ha, Hyo-Cheol
    • Journal of Mushroom
    • /
    • v.10 no.2
    • /
    • pp.74-82
    • /
    • 2012
  • Sixty strains of Pleurotus ostreatus, white-rot fungi, were screened for production ability of their lignocellulolytic enzymes to selectively wood degradation. That results were shown that all of screened strains were produced lignocellulolytic enzymes on 2nd screening liquid culture medium. However, cellulase activity of selected six strains of P. ostreatus was low in avicel-yeast-peptone liquid culture medium. In the case of xylan degrading enzyme, No. 6 and No. 38 strains produced a xylanase(above 1.0U/ml) and a 1,4-${\beta}$-xylosidase (above 0.15 U/ml). Examination of the ligninolytic enzyme profiles of selected thirteen strains of the P. ostreatus, in the presence of Remazol Brilliant Blue R(RBBR), were observed that laccase(Lac) activity were earlier reached maximum level(0.8-2.0 U/ml) and then Mn-dependent peroxidase (MnP) were reached maximum level(0.5-1.5 U/ml) in glucose-yeast-peptone(GYP) medium. On the other hand, activity of lignin peroxidase(LiP) was not detected in this medium. I selected the No. 42 strain of P. ostreatus produced high levels of Mn-dependent peroxidase and laccase based on the screening method.

Screening of White Rot Fungi with Selective Delignification Capacity for Biopulping (백색목재부후균중 Biopulping에 이용가능한 선택적 리그닌분해균의 스크리닝)

  • Lee, Jong-Kyu;Oh, Eun-Sung
    • The Korean Journal of Mycology
    • /
    • v.26 no.2 s.85
    • /
    • pp.144-152
    • /
    • 1998
  • To obtain white rot fungi which have selective delignification capacity and can be used in biopulping processes, 94 different wood rotting fungi were screened and the capabilities of selected species were evaluated on deciduous and coniferous wood blocks. White rot fungi, first of all, were selected by simple enzyme tests, i.e., cellulase activity test; phenol oxidase activity test; laccase and peroxidase activity test. Most organisms that gave a positive Bavendamm gave a strongly positive laccase test with syringaldazine whereas most of those that gave a negative Bavendamm test also negative test for laccase and peroxidase, even if some exceptions were noted. Wood decay experiement were carried out to select fungal species with selective lignin-degrading ability by inoculating selected fungi to both wood blocks of Populus tomentiglandulosa and Larix leptolepis. After 12 weeks of incubation, weight losses, lignin losses, and morphological characteristics of the decayed wood were investigated. Almost all fungi tested caused 2 or more times of weight losses in P. tomentiglandulosa than in L. leptolepis, while no weight losses were detected from the un-inoculated wood blocks. Ceriporiopsis subvermispora and Phanerochaete chrysosporium were the best delignifiers for both hardwood and softwood. P. chrysosporium, however, was less effective than C. subvermispora. Bjerkandera adusta and two unidentified spp. caused delignification for only P. tomentiglandulosa. B. adusta caused simultaneous rot of all cell wall components, resulted in thinning of the secondary cell wall layers. Other fungi caused selective delignification resulting in the removal of lignin from middle lamella and separation of cells from each other.

  • PDF

Ergosterol Contents and Enzymatic Characteristics of Lentinula edodes During Culture and Fruiting Periods (표고 균주의 배양 기간과 자실체 발생 기간에 따른 에르고스테롤 변화와 효소적 특성)

  • Kim Myungkil;Yoon Kabhee;Bak Wonchull;Park Hyun;Choi Joonweon;Lee Jaewon;Lee Bonghun
    • Journal of Korea Foresty Energy
    • /
    • v.23 no.2
    • /
    • pp.21-28
    • /
    • 2004
  • Three different strains of Lentinula edodes, Sanlim 5-Ho, Sanlim 6-Ho and Nongki 3-Ho, were cultured in the sawdust media of Mongolian oak(Quercu mongolica Fisch) for 90 days under dark and light conditions(each 30 days) and fruiting period(30 days). Weight loss of sawdust media was determined after fungal cultures and the contents of ergosterol in fungal mycelia were quantified by HPLC analysis followed by solvent extraction. Compared with the two other fungal strains$(8\%)$, weight loss of Sanlim 5-Ho was slightly lowered to $7\%$. The level of ergosterol content, a parameter for fungal growth, was continuously enhanced in Sanlim 5-Ho for dark and light incubation periods. However, Sanlim 6-Ho and Nongki 3-Ho recorded the maximized fungal growth under light condition. In fruiting periods the ergosterol contents were lowered in the three strains. Intra- and extracellular enzymes during cultural and fruiting periods were also characterized. The activity of Mn-peroxidase and laccase, which are characteristics enzymes for white rot fungi as lignin degrading enzymes, were determined as a high level overall the periods. As cellulose degrading indicators, the activity of CMCase, avicelase, xylanase and glucanase were detectable in initial incubation period.

  • PDF

Utilization of Rice Straw and Different Treatments to Improve Its Feed Value for Ruminants: A Review

  • Sarnklong, C.;Cone, J.W.;Pellikaan, W.;Hendriks, W.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.680-692
    • /
    • 2010
  • This paper gives an overview of the availability, nutritive quality, and possible strategies to improve the utilization of rice straw as a feed ingredient for ruminants. Approximately 80% of the rice in the world is grown by small-scale farmers in developing countries, including South East Asia. The large amount of rice straw as a by-product of the rice production is mainly used as a source of feed for ruminant livestock. Rice straw is rich in polysaccharides and has a high lignin and silica content, limiting voluntary intake and reducing degradability by ruminal microorganisms. Several methods to improve the utilization of rice straw by ruminants have been investigated in the past. However, some physical treatments are not practical because of the requirement for machinery or treatments are not economical feasible for the farmers. Chemical treatments, such as NaOH, $NH_3$ or urea, currently seem to be more practical for onfarm use. Alternative treatments to improve the nutritive value of rice straw are the use of ligninolytic fungi (white-rot fungi), with their extracellular ligninolytic enzymes, or specific enzymes degrading cellulose and/or hemicellulose. The use of fungi or enzyme treatments is expected to be a more practical and environmental-friendly approach for enhancing the nutritive value of rice straw and can be costeffective in the future. Using fungi and enzymes might be combined with the more classical chemical or physical treatments. However, available data on using fungi and enzymes for improving the quality of rice straw are relatively scarce.

Synthetic aromatic dye degradation by white rot fungus, Pleurotus eryngii (큰느타리(Pleurotus eryngii)의 방향족 합성염료 분해 특성)

  • Im, Kyung-Hoan;Baek, Seung-A;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.20 no.2
    • /
    • pp.86-91
    • /
    • 2022
  • Pleurotus eryngii, a white rot fungus, produces two extracellular lignin-degrading enzymes, laccase and manganese peroxidase (MnP). Owing to these enzymes, P. eryngii efficiently degrades synthetic chemicals such as azo, phthalocyanine, and triphenyl methane dyes. In this study, we investigated the degradation processes of four aromatic dyes, congo red (CR), methylene blue (MB), crystal violet (CV), and malachite green (MG), by P. eryngii under solid and liquid culture conditions. CR and MG were the most quickly degraded under solid and liquid culture conditions, respectively. However, compared to CR, CV, and MG, MB was not degraded well under both culture conditions. The activities of ligninolytic enzymes (laccase and MnP) were also investigated. Laccase was identified to be the major enzyme for dye degradation. A positive relationship between decolorization and enzyme activity was observed for CR, MB, and CV degradation. In contrast, decolorization of MG ensued after high enzyme activity. These results indicate that the degradation process differs between MG and the other aromatic dyes. Therefore, P. eryngii could be a potential tool for the bioremediation of synthetic aromatic dye effluent.

Screening of Wood-Rot Fungi Based on RBBR Decolorization and Its Laccase Activity (RBBR 탈색능을 이용한 목재부후균의 선발 및 이들 균의 Laccase 효소활성)

  • Choi, Yun-Jeong;Shin, Yoo-Su;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.46-53
    • /
    • 2006
  • This study was to screen white-rot fungi possesing strong lignin degrading enzymes, glucose-1 oxidase (GOD), laccase (LAC) and Mn-peroxidase (MnP), based on their decolorization activity of Remazol Brilliant Blue R (RBBR). In the midst of 20 tested fungi, 9 isolates were shown 4 kinds of activities such as RBBR decolorization, GOD, LAC and MnP. Relatively high active strains were identified as Phlebia radiata, Trametes versicolor, Abortiporus biennis, Gleophyllum odoratum and Cerrena unicolor. In particular, T. versicolor, G. odoratum, and C. unicolor, which have high activities of LAC, were used to confirm the optimal temperature and pH and to evaluate the effect of inducer, 2,5-xylidine on their LAC activity. The optimum temperatures for mycelial growth were $28^{\circ}C$ for T. versicolor and G. odoratum, and $25^{\circ}C$ for C. unicolor. The optimum pH for mycelial growth was 5.5. Three strains showed the increase of LAC enzyme activity by the addition of 2,5-xylidine. T. versicolor had the highest LAC activity of $22,700nkat/{\ell}$, corresponding to 11.3 times, G. odoratum $15,400nkat/{\ell}$, 9 times and C. unicolor $17,330nkat/{\ell}$, 5.5 times higher than those of the control.