Screening of Wood-Rot Fungi Based on RBBR Decolorization and Its Laccase Activity

RBBR 탈색능을 이용한 목재부후균의 선발 및 이들 균의 Laccase 효소활성

  • Choi, Yun-Jeong (R & D Center, Enbita Co. Ltd.) ;
  • Shin, Yoo-Su (National Institute of Crop Science, RAD) ;
  • Cho, Nam-Seok (School of Forest Resources and Rural Engineering, Chungbuk National University)
  • 최윤정 (주식회사 엔바이타 연구개발실) ;
  • 신유수 (농촌진흥청 작물과학원 인삼약초과) ;
  • 조남석 (충북대학교 농업생명환경대학 산림과학.지역건설공학부)
  • Received : 2006.04.05
  • Accepted : 2006.05.17
  • Published : 2006.07.25

Abstract

This study was to screen white-rot fungi possesing strong lignin degrading enzymes, glucose-1 oxidase (GOD), laccase (LAC) and Mn-peroxidase (MnP), based on their decolorization activity of Remazol Brilliant Blue R (RBBR). In the midst of 20 tested fungi, 9 isolates were shown 4 kinds of activities such as RBBR decolorization, GOD, LAC and MnP. Relatively high active strains were identified as Phlebia radiata, Trametes versicolor, Abortiporus biennis, Gleophyllum odoratum and Cerrena unicolor. In particular, T. versicolor, G. odoratum, and C. unicolor, which have high activities of LAC, were used to confirm the optimal temperature and pH and to evaluate the effect of inducer, 2,5-xylidine on their LAC activity. The optimum temperatures for mycelial growth were $28^{\circ}C$ for T. versicolor and G. odoratum, and $25^{\circ}C$ for C. unicolor. The optimum pH for mycelial growth was 5.5. Three strains showed the increase of LAC enzyme activity by the addition of 2,5-xylidine. T. versicolor had the highest LAC activity of $22,700nkat/{\ell}$, corresponding to 11.3 times, G. odoratum $15,400nkat/{\ell}$, 9 times and C. unicolor $17,330nkat/{\ell}$, 5.5 times higher than those of the control.

본 연구는 Remazol Brilliant Blue R (RBBR) 염료의 탈색능을 이용, 리그닌분해능이 강한 백색부후균을 선발하고, 이들 균주들의 리그닌분해효소의 활성에 미치는 inducer, 2,5-xylidine 첨가효과를 검토하였다. 20종의 공시균주 가운데 9종이 RBBR의 탈색, glucose-1 oxidase (GOD), laccase (LAC) 및 Mn-peroxidase (MnP) 등 4가지의 활성을 모두 가지고 있었으며, 비교적 활성이 높은 5종의 균주는 Phlebia radiata, Trametes versicolor, Abortiporus biennis, Gleophyllum odoratum 및 Cerrena unicolor 등으로 확인되었다. 이들 균주 가운데 LAC 활성이 매우 높은 T. versicolor, G. odoratum 및 C. unicolor에 대한 최적 생육온도, 최적 pH 및 LAC 활성에 미치는 inducer 첨가효과를 조사한 결과, T. versicolor가 $28^{\circ}C$에서, G. odoratum 및 C. unicolor는 $25^{\circ}C$에서 가장 좋은 생장을 보였으며, 모든 균주의 배양 최적 pH는 5.5로 나타났다. 공시균주 모두 2,5-xylidine 첨가에 의하여 LAC 활성의 증가를 보였는데, T. versicolor는 $22,700nkat/{\ell}$로 대조구에 대하여 11.3배, G. odoratum은 최대 활성이 $15,400nkat/{\ell}$로 9배, C. unicolor는 $17,330nkat/{\ell}$로 5.5배의 활성증가를 나타냈다.

Keywords

References

  1. Bollag, J. M. and A. Leonowicz. 1984. Comparative studies of extracellular fungal laccase, Applied Environ. Microbiol. 48(4): 849-854
  2. Bumpus, J. A. and S. D. Aust. 1987. Biodegradation of environmental pollutions by the white-rot fungus, Phanerocheate chrysosporium: Involvement of the lignin degrading system, Bioassays 6: 166-170 https://doi.org/10.1002/bies.950060405
  3. Charles, J. J., J. Gloria, and J. P. Michel. 1994. Envidence for a role of manganese peroxidase in the decolorization of kraft pulp bleach plant effluent by Phanerochaete chrysospolium : Effect of initial culture condition on enzyme production, J. Biotechnology 37: 229-234 https://doi.org/10.1016/0168-1656(94)90130-9
  4. Cho, Nam-Seok, Hee-Yeon Cho, and H. T. B. Pham. 2005. Degradation of pentachlorophenol by lignin degrading fungi and their laccases. Mokchae Konghak 33(5): 76-85
  5. Cho, Nam-Seok, J. Rogalski, M. Jaszek, J. Luterek, M. W. Wasilewska, E. Malarczyk, M. F. Boots, and A. Leonowicz. 1999a. Effect of coniferyl alcohol addition on removal of chlorophenols from water effluents by fungal laccase, J. Wood Sci. 45(2): 174-178 https://doi.org/10.1007/BF01192337
  6. Cho, Nam-Seok, J. H. Nam, J. M. Park, C. D. Koo, S. S. Lee, N. Nataliya, S. Ohga, and A. Leonowicz. 2001. Transformation of chlorophenols by white-rot fungi and their laccase. Holzforschung 55(6): 579-584 https://doi.org/10.1515/HF.2001.094
  7. Cho, Nam-Seok, J. M. Park, T. H. Choi, A. Matuszewska, M. Jaszek, K. Grzywnowicz, E. Malarczyk, K. Trojanowski, and A. Leonowicz. 1999b. The effect of wood rotting fungi and laccase on destaining of dyes and KP bleaching effluent. Mokchae Konghak 27(4): 72-79
  8. Cho, Nam-Seok, Tae-Ho Choi, Woonsup Shin, and A. Leonowicz. 2004. Role of fungal laccase and low molecular mediators on decolorization of aromatic dyes in paper mill effluents. J. Tianjin Univ. Sci. Technol. 19 (Supp.2): 148-155
  9. Choi, D. H. 1993. The Degradation of lignin by laccase from Pleurotus cornucopia (Pers. Rolland, Ph.D Dissertation of Seoul National University
  10. Christer, J. 1989. Water pollution control in the paper industry based on Swedish experience, J. TAPPIK 21(1): 48-51
  11. Eaton, D., H. M. Chang, T. W. Joyce, T. W. Jeffries, and T. K. Kirk. 1982. Method obtains fungal reduction of the color of extraction-stage kraft bleach effluents, Tappi 65(6): 89-92
  12. Esposito, E., P. C. Vanderlei, and N. Duran. 1991. Screening of lignin degrading fungi for removal of color from kaft mill wastewater with no additional extra carbon-source, Biotechol. Lett. 13: 571-576 https://doi.org/10.1007/BF01033412
  13. Freiter, E. R. 1979. Chlorophenols, pp.864-872. In. H. F. Mark, D. F.Othmer, C. G. Overberg, and G. T. Seaborg (ed.), Encyclopedia of Chemical Technology, 3rd ed., Vol. 5, John Wiley & Sons. Inc., New York
  14. Grader, R. J., W. D. South, and V. B. Djordje. 1973. The activited sludge process using high-purity oxygen for treating kraft mill wastewater, Tappi 56(4): 103-107
  15. Jarosz-Wilkolazka, A., E. Malarczyk, A. Leonowicz and Nam-Seok Cho. 2004. Effect of cadium ions on the activity of fungal laccase and its decolorization of dye, RBBR. Mokchae Konghak 32(6): 14-22
  16. Keither, L. H. and W. A. Telliard 1979. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416-423 https://doi.org/10.1021/es60152a601
  17. Lee, J. W. 1996. Decolorization of kraft pulp mill effluent using the white-rot fungi. MS Thesis of Chungbuk National University
  18. Lee, S. H. 1994; Studies on the treatment of kraft bleaching effluents with lignin-degrading fungi, Kyushu University, Ph.D. dissertation
  19. Leonowicz A., J. Rogalski, M. Jaszek, J. Luterek, M. W. Wasilewska, E. Malarczyk, G. Ginalska, M. Fink-Boots, and Nam-Seok Cho. 1999. Cooperation of fungal laccase and glucose l-oxidase in transformation of Bjorkman lignin and some phenolic compounds. Holzforschung 53: 376-380 https://doi.org/10.1515/HF.1999.062
  20. Leonowicz, A. and K. Grzywnowicz. 1981. Quantitative estimation laccase forms in some white-rot fungi using syringaldazine as a substrate, Enzyme Microbiol. Technol. 3(1): 55-58 https://doi.org/10.1016/0141-0229(81)90036-3
  21. Leonowicz, A., R. V. Edgehill, and J. M. Bollag. 1984. The effect of pH on the transformation of syringic vanillic acids by the laccase of Rhizoctonia praticolar and Trametes versicolor, Arch Microb., 137: 89-96 https://doi.org/10.1007/BF00414446
  22. Leonowicz, A., J. Rogalski, E. Malarczyk, K. Grzywnowicz, G. Ginalska, J. Lobarzewski, S. Ohga, N. Pashenova, S. S. Lee, and Nam-Seok Cho. 2000. Demethoxylation of milled wood lignin and lignin related compounds by laccase from white-rot fungus, Cerrena unicolor. Mokchae Konghak 28(4): 29-40
  23. Leonowicz, A., J. Rogalski, J. Szczodrak, and J. Fiedurek. 1986. The possible key role of glucose oxidase in transformation of lignocellulose. Proc. 3rd International Conference of Biotechnology in Pulp and Paper Industry. Stockholm, Sweden. June 16-19, pp.160-162
  24. Leonowicz, A., L. Gianfreda, M. W. Wasilewska, J. Rogalski, J. Luterek, E. Malarczyk, A. Dawidowicz, M. Fink-Boots, G. Ginalska, M. Staszczak, and Nam-Seok Cho. 1997. Appearance of laccase in wood-rotting fungi and its inducibility. Mokchae Konghak 25(3): 29-36
  25. Nishida, T., Y. Kashino, A. Mimura, and Y. Takahara, 1988a. Lignin biodegradation by wood-rotting fungi I. -Screening of lignin-degrading fungi, Mokuzai Gakkaishi 34(6): 530-536
  26. Nishida T., Y. Kashino, A. Mimura, and Y. Takahara. 1988b. Lignin biodegradation by wood-rotting fungi II. -Degradation of phenolic and non-phenolic, ${\beta}-0-4$ lignin substructure compounds by fungus IZU-154, Mokuzai Gakkaishi 35(2): 144-151
  27. Pifferi, P. G., G. Lanzarini, and M. Biancani. 1981. Glucose oxidase determination by means of the formation of the hydrogen peroxide-titanium complex. Anal. Chim. 18: 729-734
  28. Plaez, F., M. J. Martinez, and A. T. Martines, 1995. Screening of 68 species of basidiomycetes for enzymes involved in lignin degradation, Mycol. Res. 99(1): 37-42 https://doi.org/10.1016/S0953-7562(09)80313-4
  29. Rappe, C. 1980. Chloroaromatic compounds containing oxygen: phenols, diphenylethers, dibenzo-p-dioxins and dibenzofurans, pp. 157-179. In: Hutzinger (ed.), The Handbook of Environmental Chemistry, Springer- Verlag K.G, Berlin
  30. Rogalski, J., Nam-Seok Cho, J. Zadora, M. Prendecka, A. Choma, T. Urbanik-Sypniewska, and A. Leonowicz. 2002. Influence of aromatic compounds on biodegradation of $^{14}C-labeled$ xylan and mannan by the white-rot fungus, Phlehia radiata. J. Industrial Microbiol. Biotechnol. 28: 168-172 https://doi.org/10.1038/sj.jim.7000221
  31. Schoemaker, H. E., U. Tuor, A. Muheim, H. W. H. Schmidt, and M. S. A. Leisola. 1991. White-rot degradation of lignin and xenobiotics in biodegradation : Natural and Synthetic Materials (ed. Betts, W.B), Springer-Verlag, London., 157-174
  32. Srinivasan, C. D., T. M. Souza, K. Boominathan, and C. A. Reddy. 1995. Demonstration of laccase in the white-rot Basidiomycete Phanerochaete chrysosporium BKM-F1767. Appl. Environ. Microbiol. 61: 4274-4277
  33. Staszczak, M., G. Nowak, K. Grzywnowicz, and A. Leonowicz. 1996. Proteolytic activities in cultures of selected white-rot fungi. J. Basic Microbiol. 36: 193-203 https://doi.org/10.1002/jobm.3620360306
  34. 조남석, 이재원, 박종문, 최태호, 안드레레오노비치. 1999. 백색부후균에 의한 크라프트 펄프 표백폐수의 탈색. 펄프종이기술 31(4): 58-68