DOI QR코드

DOI QR Code

Rumen Microbes, Enzymes and Feed Digestion-A Review

  • Wang, Y. (Agriculture and Agri-Food Canada Research Centre) ;
  • McAllister, T.A. (Agriculture and Agri-Food Canada Research Centre)
  • Published : 2002.11.01

Abstract

Ruminant animals develop a diverse and sophisticated microbial ecosystem for digesting fibrous feedstuffs. Plant cell walls are complex and their structures are not fully understood, but it is generally believed that the chemical properties of some plant cell wall compounds and the cross-linked three-dimensional matrix of polysaccharides, lignin and phenolic compounds limit digestion of cell wall polysaccharides by ruminal microbes. Three adaptive strategies have been identified in the ruminal ecosystem for degrading plant cell walls: production of the full slate of enzymes required to cleave the numerous bonds within cell walls; attachment and colonization of feed particles; and synergetic interactions among ruminal species. Nonetheless, digestion of fibrous feeds remains incomplete, and numerous research attempts have been made to increase this extent of digestion. Exogenous fibrolytic enzymes (EFE) have been used successfully in monogastric animal production for some time. The possibility of adapting EFE as feed additives for ruminants is under intensive study. To date, animal responses to EFE supplements have varied greatly due to differences in enzyme source, application method, and types of diets and livestock. Currently available information suggests delivery of EFE by applying them to feed offers the best chance to increase ruminal digestion. The general tendency of EFE to increase rate, but not extent, of fibre digestion indicates that the products currently on the market for ruminants may not be introducing novel enzyme activities into the rumen. Recent research suggests that cleavage of esterified linkages (e.g., acetylesterase, ferulic acid esterase) within the plant cell wall matrix may be the key to increasing the extent of cell wall digestion in the rumen. Thus, a crucial ingredient in an effective enzyme additive for ruminants may be an as yet undetermined esterase that may not be included, quantified or listed in the majority of available enzyme preparations. Identifying these pivotal enzyme(s) and using biotechnology to enhance their production is necessary for long term improvements in feed digestion using EFE. Pretreating fibrous feeds with alkali in addition to EFE also shows promise for improving the efficacy of enzyme supplements.

Keywords

References

  1. Akin, D. E. 1989. Histological and physical factors affecting digestibility of forages. Agron. J. 81:17-25. https://doi.org/10.2134/agronj1989.00021962008100010004x
  2. Ali, B. R. S., L. Zhou, F. M. Graves, R. B. Freedman, G. W. Black, H. J. Gilbert and G. P. Hazlewood. 1995. Cellulases and hemicellulases of the anaerobic fungus Piromyces constitute a multiprotein cellulose-binding complex and are encoded by multigene families. FEMS Microbiol. Lett. 125:15-22. https://doi.org/10.1111/j.1574-6968.1995.tb07329.x
  3. Bae, H. D., T. A. McAllister, L. J. Yanke, K.-J. Cheng and A. D. Muir. 1993. Effect of condensed tannins on endoglucanase activity and filter paper digestion by Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 59:2132-2138.
  4. Bae, H. D., T. A. McAllister, E. G. Kokko, F. L. Leggett, L. J. Yanke, K. D. Jakober, J. K. Ha, H. T. Shin and K.-J. Cheng. 1997. Effect of silica on the colonization of rice straw by ruminal bacteria. Anim. Feed Sci. Technol. 65:161-181. https://doi.org/10.1016/S0377-8401(96)01093-0
  5. Bauchop, T. 1981. The anaerobic fungi in rumen fiber digestion. Agric. Environ. 6:338-348. https://doi.org/10.1016/0304-1131(81)90021-7
  6. Bauchop, T. and D. O. Mountfort. 1981. Cellulose fermentation by a rumen anaerobic fungus in both the absence and the presence of rumen methanogens. Appl. Environ. Microbiol. 42:1103-1110.
  7. Bayer E. A., E. Morag and R. Lamed. 1994. The cellulosome - a treasure trove for biotechnology. Trends Biotechnol. 12:379-386. https://doi.org/10.1016/0167-7799(94)90039-6
  8. Beauchemin, K. A., L. M. Rode and V. J. H. Sewalt. 1995. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can. J. Anim. Sci. 75:641-644. https://doi.org/10.4141/cjas95-096
  9. Beauchemin, K. A. and L. M. Rode. 1996. Use of feed enzymes in ruminant nutrition. In: Animal Science Research and Development--Meeting Future Challenges (Ed. L. M. Rode). Minister of Supply and Services Canada, Ottawa, ON, pp. 103-131.
  10. Beauchemin, K. A., S. D. M. Jones, L. M. Rode and V. J. H. Sewalt. 1997. Effects of fibrolytic enzyme in corn or barley diets on performance and carcass characteristics of feedlot cattle. Can. J. Anim. Sci. 77: 645-653. https://doi.org/10.4141/A97-050
  11. Beauchemin, K. A., W. Z. Yang and L. M. Rode. 1999. Effects of enzyme additive or grain source on site and extent of nutrient digestion in dairy cows. J. Dairy Sci. 82:378-390. https://doi.org/10.3168/jds.S0022-0302(99)75244-6
  12. Beguin P. and J. P. Aubert. 1994. The biological degradation of cellulose. FEMS Microbiol. Rev. 13:2558. https://doi.org/10.1111/j.1574-6976.1994.tb00033.x
  13. Ben-Ghedalia, D. and J. Miron. 1981. The effect of com bined chemical and enzyme treatment on the saccharification and in vitro digestion rate of wheat straw. Biotechnol. Bioeng. 23:823-831. https://doi.org/10.1002/bit.260230412
  14. Ben-Ghedalia, D., G. Shefet, J. Miron and Y. Dror. 1982. Effect of ozone and sodium hydroxide treatments on some chemical characteristics of cotton straw. J. Sci. Food Agric. 33:1213-1218. https://doi.org/10.1002/jsfa.2740331207
  15. Bernalier, A., G. Fonty, F. Bonnemoy and P. Gouet. 1993. Inhibition of the cellulolytic activity of Neocallimastix frontalis by Ruminococcus flavefaciens. J. Gen. Microbiol. 139:873-880. https://doi.org/10.1099/00221287-139-4-873
  16. Bonhomme A. 1990. Rumen ciliates: their metabolism and relationships with bacteria and their hosts. Anim. Feed Sci. Technol. 30:203-266. https://doi.org/10.1016/0377-8401(90)90016-2
  17. Brock, F. M., C. W. Forsberg and J. G. Buchanan-Smith. 1982. Proteolytic activity of rumen microorganisms and effects of proteinase inhibitors. Appl. Environ. Microbiol. 44:561-569.
  18. Burroughs, W., W. Woods, S. A. Ewing, J. Greig and A. B. Theurer. 1960. Enzyme additions to fattening cattle rations. J. Anim. Sci. 19:458-464. https://doi.org/10.2527/jas1960.192458x
  19. Carpita, N. C. and D. M. Gibeaut. 1993. Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J. 3:1-30 https://doi.org/10.1111/j.1365-313X.1993.tb00007.x
  20. Chafe, S. C. 1970. The fine structure of the collenchyma cell wall. Planta 90:12-21. https://doi.org/10.1007/BF00389292
  21. Chen, K. H., J. T. Huber, J. Simas, C. B. Theurer, P. Yu, S. C. Chan, F. Santos, Z. Wu and R. S. Swingle. 1995. Effect of enzyme treatment or steam-flaking of sorghum grain on lactation and digestion in dairy cows. J. Dairy Sci. 78:1721-1727. https://doi.org/10.3168/jds.S0022-0302(95)76797-2
  22. Cheng, K.-J. and T. A. McAllister. 1997. Compartmentation in the rumen. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Elsevier Science Publishers Ltd., London, UK, pp. 492-522.
  23. Cheng, K.-J., C. W. Forsberg, H. Minato and J. W. Costerton. 1991. Microbial ecology and physiology of feed degradation within the rumen. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). Academic Press, New York, pp. 595-624.
  24. Cheng, K.-J., J. P. Fay, R. N. Coleman, L. P. Milligan and J. W. Costerton. 1981. Formation of bacterial microcolonies on feed particles in the rumen. Appl. Environ. Microbiol. 41:298-305.
  25. Cheng, K.-J., C. S. Stewart, D. Dinsdale and J. W. Costerton. 1983/84. Electron microscopy of the bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol. 10:93-120. https://doi.org/10.1016/0377-8401(84)90002-6
  26. Chesson, A., C. S. Stewart and R. J. Wallace. 1982. Influence of plant phenolics acids on growth and cellulolytic activity of rumen bacteria. Appl. Environ. Microbiol. 44:597-603.
  27. Chesson, A., A. H. Gordon and J. A. Lomax. 1983. Substituent groups linked by alkali-labile bonds to arabinose and xylose residues of legume, grass and cereal straw cell walls and their fate during digestion by rumen microorganisms. J. Sci. Food Agric. 34:1330-1340. https://doi.org/10.1002/jsfa.2740341204
  28. Chesson, A. and C. W. Forsberg. 1997. Polysaccharide degradation by rumen microorganisms. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson and C. S. Stewart). Elsevier Science Publishers Ltd., London, UK, pp. 329-381.
  29. Coleman, G. S. 1986. The metabolism of rumen ciliate protozoa. FEMS Microbiol. Rev. 39:321-344. https://doi.org/10.1111/j.1574-6968.1986.tb01864.x
  30. Considine, P. J and M. P. Coughlan. 1989. Production of carbohydrate-hydrolyzing enzyme blends by solid-state fermentation. In: Enzyme Systems for Lignocellulose Degradation (Ed. M. P. Coughlan). Elsevier Applied Science, New York, pp. 273-281.
  31. Craig, W. M., G. A. Broderick and D. B. Ricker. 1987. Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. J. Nutr. 117:56-62.
  32. Dehority, B. A. 1993. Microbial ecology of cell wall fermentation. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). American Society of Agronomy, Inc., Crop Science Society of America, Inc. and Soil Science Society of America. Inc., Madison WI, pp. 425-453.
  33. Deniels, L. B. and R. B. Hashim. 1977. Evaluation of fungal cellulases in rice hull based diets for ruminants. J. Dairy Sci. 60:1563-1567. https://doi.org/10.3168/jds.S0022-0302(77)84071-X
  34. Denigan, M. E., J. T. Huber, G. Alhadhrami and A. Al-Dehneh. 1992. Influence of feeding varying levels of $Amaferm^{\circledR}$ on performance of lactating dairy cows. J. Dairy Sci. 75:1616-1621. https://doi.org/10.3168/jds.S0022-0302(92)77918-1
  35. Dijkstra, J. and S. Tamminga. 1995. Simulation of the effects of diet on the contribution of rumen protozoa to degradation of fibre in the rumen. Br. J. Nutr. 74:617-634. https://doi.org/10.1079/BJN19950166
  36. Doerner K. C. and B. A. White. 1990. Assessment of the endo-$\beta$-1, 4-glucanase components of Ruminococcus flavefaciens FD1. Appl. Environ. Microbiol. 56:1844-1850.
  37. Fanutti C., T. Ponyi, G. W. Black, G. P. Hazlewood and H. J. Gilbert. 1995. The conserved noncatalytic 40-residue sequence in cellulases and hemicellulases from anaerobic fungi functions as a protein docking domain. J. Biol. Chem. 49:29314-29322.
  38. Fahey, G. C., L. D. Bourquin Jr., E. C. Titgemeyer and D. G. Atwell. 1993. Postharvest treatment of fibrous feedstuffs to improve their nutritive value. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). American Society of Agronomy, Inc., Crop Science Society of America, Inc. and Soil Science Society of America. Inc., Madison WI, pp 715-766.
  39. Feng, P., C. W. Hunt, G. T. Pritchard and W. E. Julien. 1996. Effect of enzyme preparations on in situ and in vitro degradation and in vivo digestive characteristics of mature cool-season grass forage in beef steers. J. Anim. Sci. 74:1349-1357. https://doi.org/10.2527/1996.7461349x
  40. Firkins, J. L., W. P. Weiss, M. L. Eastridge and B. L. Hull. 1990. Effects of feeding fungal culture extract and animal-vegetable fat on degradation of hemicellulose and on ruminal bacterial growth in heifers. J. Dairy Sci. 73:1812-1822. https://doi.org/10.3168/jds.S0022-0302(90)78861-3
  41. Flint, H. J., J. X. Zhang and J. Martin. 1994. Multiplicity and expression of xylanases in the rumen cellulolytic bacterium Ruminococcus flavefaciens. Curr. Microbiol. 29:139-143. https://doi.org/10.1007/BF01570754
  42. Fonty, G. and K. N. Joblin. 1991. Rumen anaerobic fungi: their role and interactions with other rumen microorganisms in relation to fiber digestion. In: Physiological Aspects of Digestion and Metabolism in Ruminants (Ed. T. Tsuda, Y. Sasaki and R. Kawashima). Academic Press, Toronto, ON. pp. 665-680.
  43. Forsberg, C. W., K.-J. Cheng, P. J. Krell and J. P. Phillips. 1993. Establishment of rumen microbial gene pools and their manipulation to benefit fibre digestion by domestic animals. Proceedings VII World Conference on Animal Production, Edmonton, AB. pp. 281-316.
  44. Forsberg, C. W. and K.-J. Cheng. 1992. Molecular strategies to optimize forage and cereal digestion by ruminants. In: Biotechnology and Nutrition (Ed. D. D. Bills and S.-D. Kung). Butterworth Heinmann, Stoneham, UK. pp. 107-147.
  45. Forsberg, C. W. and K. Lam. 1977. Use of adenosine-5'-triphosphate as an indicator of the microbiota biomass in rumen contents. Appl. Environ. Microbiol. 33:528.
  46. Forwood, J. R., D. A. Sleper and J. A. Henning. 1990. Topical cellulase application effects on tall fescue digestibility. Agron. J. 82:900-913.
  47. Fry, S. C. 1986. Crosslinking of matrix polymers in the growing cell walls of angiosperms. Ann. Rev. Plant Physiol. 37:165-186. https://doi.org/10.1146/annurev.pp.37.060186.001121
  48. Gashe, B. A. 1992. Cellulase production and activity by Trichoderma sp. A-001. J. Appl. Bacteriol. 73:79-82. https://doi.org/10.1111/j.1365-2672.1992.tb04973.x
  49. Gilbert, H. J., G. P. Hazlewood, J. I. Laurie, C. G. Orpin and G. P. Xue. 1992. Homologous catalytic domains in a rumen fungal xylanase-evidence for gene duplication and prokaryotic origin. Mol. Microbiol. 6:2065-2072. https://doi.org/10.1111/j.1365-2958.1992.tb01379.x
  50. Girard, I. D. and K. A. Dawson. 1995. Stimulation of ruminal bacteria by different fractions derived from cultures of Saccharomyces cerevisiae strain 1026. J. Anim. Sci. 73(Suppl. 1):264.
  51. Gomez-Alarcon, R. A., C. Dudas and J. T. Huber. 1990. Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J. Dairy Sci. 73:703-710. https://doi.org/10.3168/jds.S0022-0302(90)78723-1
  52. Gordon, G. L. R. and M. W. Phillips. 1992. Extracellular pectin lyase produced by Neocallimastix sp. LM1, a rumen anaerobic fungus. Lett. Appl. Microbiol. 15:113-115. https://doi.org/10.1111/j.1472-765X.1992.tb00740.x
  53. Gould, J. M. 1984. Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 26:46-52. https://doi.org/10.1002/bit.260260110
  54. Gradel, C. M. and B. A. Dehority. 1972. Fermentation of isolated pectin and pectin from intact forage by pure cultures of rumen bacteria. Appl. Microbiol. 23:332-340.
  55. Greve, L. C., J. M. Labavitch and R. E. Hungate. 1984. $\alpha$-LArabinofuranosidase from Ruminococcus albus 8: Purification and possible role in the hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47:1135-1140.
  56. Grous, W. R., A. O. Converse and H. E. Grethlein. 1986. Effect of steam explosion pretreatment on pore size and enzymatic hydrolysis of poplar. Enz. Microbiol. Technol. 8: 274-280. https://doi.org/10.1016/0141-0229(86)90021-9
  57. Gwayumba, W. and D. A. Christensen. 1997. The effect of fibrolytic enzymes on protein and carbohydrate degradation fractions in forages. Can. J. Anim. Sci. 77:541-542. https://doi.org/10.4141/A96-143
  58. Hartley, R. D. and D. E. Akin. 1989. Effect of forage cell wall phenolic acids and derivatives on rumen microflora. J. Sci. Food Agric. 49:405-411. https://doi.org/10.1002/jsfa.2740490403
  59. Hartley, R. D. and C. W. Ford. 1989. Phenolic constituents of plant cell wall and biodegradability. In: Plant Cell Wall Polymers: Biogenesis and Biodegradation (Ed. N. G. Lewis and M. G. Paice). American Chemical Society, Washington, DC. pp. 137-147.
  60. Hoover, W. H., C. R. Kincaid, G. A. Varga, W. V. Thayne and L. L. Junkins, Jr. 1984. Effects of solids and liquid flows of fermentation in continuous cultures. IV. pH and dilution rates. J. Anim. Sci. 58:692-699. https://doi.org/10.2527/jas1984.583692x
  61. Hristov, A. N., L. M. Rode, K. A. Beauchemin and R. L. Wuerfel. 1996a. Effect of a commercial enzyme preparation on barley silage in vitro and in sacco dry matter degradability. Proceedings, West Sect, Am Soc Anim Sci, Rapid City, SD, 47:282-284.
  62. Hristov, A. N., T. A. McAllister and K.-J. Cheng. 1996b. Exogenous enzymes for ruminants. Proceedings, 17th West Nutr Conf, Edmonton, AB, pp. 51- 61.
  63. Hristov, A. N., T. A. McAllister and K.-J. Cheng. 1998. Stability of exogenous polysaccharide-degrading enzyme in the rumen. Anim. Feed Sci. Technol. 76:165-172. https://doi.org/10.1016/S0377-8401(98)00217-X
  64. Iwassa, A. D., L. M. Rode, K. A. Beauchemin and S. Eivemark. 1997. Effect of fibrolytic enzymes in barley-based diets on performance of feedlot cattle and in vitro gas production. In: Evolution of the Rumen Microbial Ecosystem, Joint RRIINRA Rumen Microbiology Symposium. Aberdeen, Scotland, Poster 39.
  65. Jarvis, M. C. 1984. Structure and properties of pectin gels in plant cell walls. Plant Cell Environ. 7:153-164.
  66. Joblin, K. N. 1981. Isolation, enumeration and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 42:1119-1122.
  67. Joblin, K. N., G. E. Naylor and A. G. Williams. 1990. Effect of Methanobrevibacter smithii on xylanolytic activity of anaerobic ruminal fungi. Appl. Environ. Microbiol. 56:2287-2295.
  68. Judkins, M. B. and R. H. Stobart. 1988. Influence of two levels of enzyme preparation on ruminal fermentation, particulate and fluid passage rate and cell wall digestion in wether lambs consuming either a 10% or 25% grain diet. J. Anim. Sci. 66:1010-1015. https://doi.org/10.2527/jas1988.6641010x
  69. Jung, H.-J. G. and T. Sahlu. 1986. Depression of cellulose digestion by esterified cinnamic acids. J. Sci. Food Agric. 37:659-665. https://doi.org/10.1002/jsfa.2740370709
  70. Kerley, M. S., G. C. Fahey, L. L. Berger and F. Lee Baker. 1985. Alkaline hydrogen peroxide treatment unlocks energy in agricultural by-products. Science. 230: 820-822. https://doi.org/10.1126/science.230.4727.820
  71. Kopency, J., M. Marounek and K. Holub. 1987. Testing the suitability of the addition of Trichoderma viride cellulases to feed rations for ruminants. Zivocisna vyroba 32:587-592.
  72. Krause, M., K. A. Beauchemin, L. M. Rode, B. I. Farr and P. Norgaard. 1998. Fibrolytic enzyme treatment of barley grain and source of forage in high grain diets fed to growing cattle. J. Anim. Sci. 96:1010-1015.
  73. Kung, L. Jr. 1996. Direct-fed microbial and enzyme feed additives. In: Direct-Fed Microbial, Enzyme and Forage Additive Compendium (Ed. S. Muirhead). The Miller Publishing Company, Minetonka, MN, pp. 15-20.
  74. Kung, L. Jr., R. J. Treacher, G. A. Nauman, A. M. Smagala, K. M. Endres and M. A. Cohen. 2000. The effect of treating forage with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J. Dairy Sci. 83:115-122. https://doi.org/10.3168/jds.S0022-0302(00)74862-4
  75. Lam, T. B. T., K. Iiyama and B. A Stone. 1990. Primary and secondary walls of grasses and other forage plants: taxonomic and structural considerations. In: Microbial and Plant Opportunities to Improve Lignocellulose Utilization by Ruminants (Ed. D. E. Akin, L. G. Ljungdahl, J. R. Wilson and P. J. Harris). Elsevier Science Publishers, London. pp. 43-69.
  76. Lam, T. B. T., K. Iiyama and B. A. Stone. 1992a. Cinnamic acid bridges between cell wall polymers in wheat and phalaris internodes. Phytochem. 31:1179-1183. https://doi.org/10.1016/0031-9422(92)80256-E
  77. Lam, T. B. T., K. Iiyama and B. A. Stone. 1992b. Changes in phenolic acids from internode walls of wheat and phalaris during maturation. Phytochem. 31:2655-2658. https://doi.org/10.1016/0031-9422(92)83605-X
  78. Lappin-Scott, H. M., J. W. Costerton and T. J. Marrie. 1992. Biofilms and biofouling. In: Encyclopedia of Microbiology Vol. 1 (Ed. M. Alexandra, D. A. Hopwood, B. H. Iglewski and A. I. Laskin). Academic Press, Toronto, ON. p. 277.
  79. Latham, M. J. 1980. Adhesion of rumen bacteria to plant cell walls. In: Microbial Adhesion to Surfaces (Ed. R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter and B. Vincent). Ellis Horwood Ltd., West Sussex, England. pp. 339-350.
  80. Lehninger, A. L. 1982. Principles of Biochemistry, Worth Publishers, Inc., New York, NY.
  81. Lewis, G. E., C. W. Hunt, W. K. Sanchez, R. Treacher, G. T. Pritchard and P. Feng. 1996. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J. Anim. Sci. 74:3020-3028. https://doi.org/10.2527/1996.74123020x
  82. Liu, J. X. and E. R. Orskov. 2000. Cellulase treatment of untreated and steam pre-treated rice straw-effect on in vitro fermentation characteristics. Anim. Feed Sci. Technol. 88:189-200. https://doi.org/10.1016/S0377-8401(00)00218-2
  83. Malburg, L. M. and C. W. Forsberg. 1993. Fibrobacter succinogenes possesses at least nine distinct glucanase genes. Can. J. Microbiol. 39:882-891. https://doi.org/10.1139/m93-132
  84. Martin, S. A. and D. J. Nisbet. 1992. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 75:1736-1744. https://doi.org/10.3168/jds.S0022-0302(92)77932-6
  85. Matte, A. and C. W. Forsberg. 1992. Purification, characterization, and mode of action of endoxylanases 1 and 2 from Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 58:157-168.
  86. McAllister, T. A., H. D. Bae, G. A. Jones and K.-J. Cheng. 1994. Microbial attachment and feed digestion in the rumen. J. Anim. Sci. 72:3004-3018. https://doi.org/10.2527/1994.72113004x
  87. McAllister, T. A. and K.-J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62:29-36. https://doi.org/10.1016/S0377-8401(96)01003-6
  88. McAllister, T. A., A. N. Hristov, K. A. Beauchemin, L. M. Rode and K.-J. Cheng. 2001. Enzymes in ruminant diets. In: Enzymes in Farm Animal Nutrition (Ed. M. R. Bedford and G. G. Partridge). CABI Publishing, CAB International, UK. pp. 273-298.
  89. McAllister, T. A., H. D. Bae, L. J. Yanke, K.-J. Cheng and A. D. Muir. 1993. Effect of condensed tannins from birdsfoot trefoil on endoglucanase activity and the digestion of cellulose filter paper by ruminal fungi. Can. J. Microbiol. 40:298-305. https://doi.org/10.1139/m94-048
  90. McAllister, T. A., S. J. Oosting, J. D. Popp, Z. Mir, L. J. Yanke, A. N. Hristov, R. J. Treacher and K.-J. Cheng. 1999. Effect of exogenous enzymes on digestibility of barley silage and growth performance of feedlot cattle. Can. J. Anim. Sci.. 79:353-360. https://doi.org/10.4141/A98-099
  91. McNeil, M., A. G. Darvill, S. C. Fry and P. Albersheim. 1984. Structure and function of the primary cell wall of plants. Annu. Rev. Biochem. 53:625-663. https://doi.org/10.1146/annurev.bi.53.070184.003205
  92. Minato, H., A. Endo, Y. Ootomo and T. Uemura, T. 1966. Ecological treatise on the rumen fermentation. II. The amylolytic and cellulolytic activities of fractionated bacterial portions attached to the rumen solids. J. Gen. Microbiol. 12:53-69. https://doi.org/10.2323/jgam.12.53
  93. Morgavi, D. P., K. A. Beauchemin, V. L. Nsereko, L. M. Rode, A. D. Iwaasa, W. Z. Yang, T. A. McAllister and Y. Wang. 2000. Synergy between ruminal fibrolytic enzymes and enzymes from Trichoderma longibrachiatum in degrading fibre substrates. J. Dairy Sci. 83:1310-1321. https://doi.org/10.3168/jds.S0022-0302(00)74997-6
  94. Morgavi, D. P., V. L. Nsereko, L. M. Rode, K. A. Beauchemin, T. A. McAllister, A. D. Iwassa, Y. Wang and W. Z. Yang. 2001. Resistance of feed enzymes to proteolytic inactivation by rumen microorganisms and gastrointestinal proteases. J. Anim. Sci. 79:1621-1630. https://doi.org/10.2527/2001.7961621x
  95. Morrison, I. M. 1988. Influence of chemical and biological pretreatments on the degradation of lignocellulosic material by biological systems. J. Sci. Food Agric. 42:295-304. https://doi.org/10.1002/jsfa.2740420403
  96. Morrison, I. M. 1991. Change in biodegradability of ryegrass and legume fibre by chemical and biological pretreatments. J. Sci. Food Agric. 54:521-533. https://doi.org/10.1002/jsfa.2740540404
  97. Morris, E. J. and O. J. Cole. 1987. Relationship between cellulolytic activity and adhesion to cellulose in Ruminococcus albus. J. Gen. Microbiol. 133:1023-1032.
  98. Mountfort, D. O., R. A. Asher and T. Bauchop. 1982. Fermentation of cellulose to methane and carbon dioxide by a rumen anaerobic fungus in triculture with Methanobrevibacter sp. Strain RA1 and Methanosarcina barkeri. Appl. Environ. Microbiol. 44:128-134.
  99. Muirhead, S. 1996. Direct Fed Microbial, Enzyme and Forage Additive Compendium, 3rd ed. The Miller Publishing Company, Minetonka, MN. p. 391.
  100. Muzakhar, K., H. Hayashii, T. Kawaguchi, J. Sumitani and M. Arai. 1998. Purification and properties of $\alpha$-L-arabinofuranosidase and endo-$\beta$-D-1,4-galactanase from Aspergillus niger KF-267 which liquefied the okara. MIE Bioforum, Genetics, Biochemistry and Ecology of Cellulose Degradation. Suzuka, Japan, p.133.
  101. Nagaraja, T. G., C. J. Newbold, C. J. Van Nevel and D. I. Demeyer. 1997. Manipulation of Ruminal Fermentation. In: The Rumen Microbial Ecosystem 2nd ed. (Ed. P. N. Hobson and C. S. Stewart). Blackie Academic & Professional; London, UK. pp. 523-632.
  102. Newbold, C. J. 1995. Microbial feed additives for ruminants. In: Biotechnology in Animal Feeds and Animal Feeding (Ed. R. J. Wallace and H. C. Chesson). VCH Publishers Inc., New York, pp. 259-278.
  103. Newbold, C. J., R. Brock and R. J. Wallace. 1992a. The effect of Aspergillus oryzae fermentation extract on the growth of fungi and ciliate protozoa in the rumen. Lett. Appl. Microbiol. 15:109-112. https://doi.org/10.1111/j.1472-765X.1992.tb00739.x
  104. Newbold, C. J., P. P. Frumholtz and R. J. Wallace. 1992b. Influence of Aspergillus oryzae fermentation extract on rumen fermentation and blood constituents in sheep given diets of grass hay and barley. J. Agric. Sci.(Cambr.) 119:423-427. https://doi.org/10.1017/S0021859600012272
  105. Nisbet, D. J. and S. A. Martin. 1993. Effect of fumarate, L-malate, and an Aspergillus oryzae fermentation extract on D-lactate utilization by the ruminal bacterium Selenomonas ruminantium. Curr. Microbiol. 26:133-136. https://doi.org/10.1007/BF01577366
  106. Nocek, J. W. 1998. Carbohydrates in dairy rations: managing subclinical acidosis. Proceedings, 33rd Ann Pacific Northwest Anim Nutr Conf, Vancouver, BC, pp. 17-31.
  107. Odenyo, A. A., R. I. Mackie, D. A. Stahl and B. A. White. 1994. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw. Appl. Environ. Microbiol. 60:3697-3703.
  108. Orpin, C. G. 1984. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim. Feed Sci. Technol. 10:121-143. https://doi.org/10.1016/0377-8401(84)90003-8
  109. Owens, F. N. and A. L. Goetsch. 1986. Digesta passage and microbial protein synthesis. In: Control of Digestion and Metabolism in Ruminants (Ed. L. P. Milligan, W. L. Grovum and A. Dobson). Prentice-Hall, Englewood Cliffs, NJ. pp. 196-223.
  110. Pavlostathis, S. G., T. L. Miller and M J. Wolin. 1988. Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus. Appl. Environ. Microbiol. 54:2660-2663.
  111. Pendleton, B. 1996. The regulatory environment. In: Direct-Fed Microbial, Enzyme and Forage Additive Compendium (Ed. S. Muirhead). The Miller Publishing Company, Minetonka, MN, pp. 47-52.
  112. Poutanen, K., J. Puls and M. Linko. 1986. The hydrolysis of steamed birchwood hemicellulose by enzymes produced by Trichoderma reesei and Aspergillus awamori. Appl. Microbiol. Biotechnol. 23:487-490. https://doi.org/10.1007/BF02346065
  113. Rombouts, F. M. and W. Pilnik. 1986. Pectinases and other cell degrading enzymes of industrial importance. Symbiosis. 2:79-90.
  114. Rode, L. M., T. A. McAllister, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, W. Z. Yang, A. D. Iwaasa and Y. Wang. 2001. Enzymes as direct-feed additives for ruminants. In: Biotechnology in Animal Husbandry (Ed. R. Renaville and A. Burny). Kluwer Academic Publishers. Vol. 5. pp. 301-332. https://doi.org/10.1007/0-306-46887-5_17
  115. Rose, A. H. 1987. Yeast culture, a microorganism for all species: a theoretical look at its mode of action. In: Biotechnology in Feed Industry (Ed. T. P. Lyons). Alltech Technical Publications, Nicholasville, KY. pp. 113-118.
  116. Rovics, J. J. and C. M. Ely. 1962. Response of beef cattle to enzyme supplement. J. Anim. Sci. 21:1012(Abstr.)
  117. Russell, J. B. and D. B. Dombrowski. 1980. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 39:606-610.
  118. Rust, J. W., N. L. Jacobsen, A. D. McGilliard and D. K. Hotchkiss. 1965. Supplementation of dairy calf diets with enzymes. II. Effect on nutrient utilization and on composition of rumen fluid. J. Anim. Sci. 24:156-160. https://doi.org/10.2527/jas1965.241156x
  119. Schingoethe, D. J., G. A. Stegeman and R. J. Treacher. 1999. Response of lactating dairy cows to a cellulase and xylanase enzyme mixture applied to forages at the time of feeding. J. Dairy Sci. 82:996-1003. https://doi.org/10.3168/jds.S0022-0302(99)75319-1
  120. Silley, P. 1985. A note on the pectinolytic enzymes of Lachnospira multiparus. J. Appl. Bacteriol. 58:145-149. https://doi.org/10.1111/j.1365-2672.1985.tb01441.x
  121. Stewart, C. S., S. H. Duncan and A. J. Richardson. 1992. The inhibition of fungal cellulolysis by cell-free preparations from ruminococci. FEMS Microbiol. Lett. 97:83-87. https://doi.org/10.1111/j.1574-6968.1992.tb05444.x
  122. Teunissen, M. J., E. P. W. Kets and H. J. M. Op den Camp. 1992. Effect of co-culture of anaerobic fungi isolated from ruminants and non-ruminants with methanogenic bacteria on cellulolytic and xylanolytic enzyme activities. Arch. Microbiol. 157:176-182.
  123. Trinci, A. P. J., D. R. Davies, K. Gull, M. I. Lawrence, B. B. Nielsen, A. Rickers and M. K. Theodorou. 1994. Anaerobic fungi in herbivorous animals. Mycol. Res. 98:129-152. https://doi.org/10.1016/S0953-7562(09)80178-0
  124. Vandevoorde, L. and W. Verstraete. 1987. The effect of aerobic cellulases on rumen fermentation. Medical Faculty Landbouww Rijksuniversity Gent 52:1647-1654.
  125. Varel, V. H., K. K. Kreikemeier, H. G. Jung and R. D. Hatfield. 1993. In vitro stimulation of forage fiber degradation by ruminal microorganisms with Aspergillus oryzae fermentation extract. Appl. Environ. Microbiol. 59:3171-3176.
  126. Varel, V. H. and K. Kreikemeier. 1994. Influence of feeding Aspergillus oryzae fermentation extract (Amaferm) on the in situ fiber degradation, ruminal fermentation, and microbial protein synthesis in nonlactating cows fed alfalfa of bromegrass hay. J. Anim. Sci. 72:1814-1822. https://doi.org/10.2527/1994.7271814x
  127. Waite, R. and A. R. N. Gorrod. 1959. The structural carbohydrates of grasses. J. Sci. Food Agric. 10:308-317. https://doi.org/10.1002/jsfa.2740100603
  128. Wang, Y., T. A. McAllister, R. E. Wilde, J. Baah, K. A. Beauchemin, L. M. Rode, J. A. Shelford and K.-J. Cheng. 1999. Effects of monensin, exogenous fibrolytic enzymes and Tween 80 on performance of feedlot cattle. Can. J. Anim. Sci. 79:587(Abstr.).
  129. Wang, Y., T. A. McAllister, L. J. Yanke, Z. J. Xu, P. R. Cheeke and K.-J. Cheng. 2000a. In vitro effect of steroidal saponins from Yucca schidigera extract on ruminal microbial protein synthesis and ruminal fermentation. J. Sci. Food Agric. 80:2114-2122. https://doi.org/10.1002/1097-0010(200011)80:14<2114::AID-JSFA755>3.0.CO;2-0
  130. Wang, Y., T. A. McAllister, L. J. Yanke and P. R. Cheeke. 2000b. Effect of steroidal saponins from Yucca schidigera extract on ruminal microbes. J. Appl. Microbiol. 88:887-896. https://doi.org/10.1046/j.1365-2672.2000.01054.x
  131. Wang, Y., T. A. McAllister, L. M. Rode, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, A. D. Iwaasa and W. Yang. 2001a. Effect of enzymes supplementation on the ruminal fermentation and microbial protein synthesis in Rusitec. Br. J. Nutr. 85:325-332. https://doi.org/10.1079/BJN2000277
  132. Wang, Y., T. A. McAllister, L. J. Yanke, K. A. Beauchemin, D. P. Morgavi, L. M. Rode and W. Yang. 2001b. Effect of exogenous fibrolytic enzymes on the digestion of alfalfa hay and barley straw by cellulolytic ruminal bacteria. J. Anim. Sci. 79 (Suppl. 1):285. https://doi.org/10.2527/jas2001.79E-SupplE285x
  133. Wang, Y., T. A. McAllister, B. Spratling, D. R. ZoBell and R. D. Wiedmeier. 2002a. Effect of exogenous fibrolytic enzymes on alkali-treated wheat straw. J. Anim. Sci. (Submitted).
  134. Wang, Y. and T. A. McAllister. 2002b. Investigation of exogenous fibrolytic enzyme activity on barley straw using in vitro incubation. J. Anim. Sci. 80 (Suppl. 1):316. https://doi.org/10.2527/2002.802316x
  135. Wang, Y., T. A. McAllister, L. M. Rode, K. A. Beauchemin, D. P. Morgavi, V. L. Nsereko, A. D. Iwaasa and W. Yang. 2002c. Effect of exogenous fibrolytic enzymes on epiphytic microbial populations and in vitro silage digestion. J. Sci. Food Agric. 82:760-768. https://doi.org/10.1002/jsfa.1103
  136. Weimer, P. J. 1993. Effects of dilution rate and pH on the ruminal cellulolytic bacterium Fibrobacter succinogenes S85 in cellulose-fed continuous culture Arch. Microbiol. 160:288-294. https://doi.org/10.1007/BF00292079
  137. Weimer, P. J. 1996. Why don't ruminal bacteria digest cellulose fast. J. Dairy Sci. 79:1496-1502. https://doi.org/10.3168/jds.S0022-0302(96)76509-8
  138. Wiedmeier, R. D., M. J. Arambel and J. L. Walters. 1987. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristic and nutrient digestibility. J. Dairy Sci. 70:2063-2068. https://doi.org/10.3168/jds.S0022-0302(87)80254-0
  139. White, B. A., R. I. Mackie and K. C. Doerner. 1993. Enzymatic hydrolysis of forage cell walls. In: Forage Cell Wall Structure and Digestibility (Ed. H. G. Jung, D. R. Buxton, R. D. Hatfield and J. Ralph). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, WI, pp. 455-484.
  140. Wilkie, K. C. B. 1979. The hemicelluloses of grasses and cereals. Adv. Carbohydr. Chem. Biochem. 36:215-264. https://doi.org/10.1016/S0065-2318(08)60237-1
  141. Williams, A. G., and G. S. Coleman. 1988. The rumen protozoa. In: The Rumen Microbial Ecosystem (Ed. P. N. Hobson). Elsevier Science Publishing Co., New York, NY. p 77.
  142. Williams, A. G. and G. S. Coleman. 1991. The rumen protozoa. Springer-Verlag, New York.
  143. Williams, A. G. and N. H. Strachan 1984. The distribution of polysaccharide-degrading enzymes in the bovine rumen digesta ecosystem. Curr. Microbiol. 10:215. https://doi.org/10.1007/BF01627258
  144. Wood, T. M 1992. Fungal cellulases. Biochem. Soc. Trans. 20:4653. https://doi.org/10.1042/bst0200046
  145. Wubah, D. A., D. E. Akin and W. S. Borneman. 1993. Biology, fiber-degradation, and enzymology of anaerobic zoosporic fungi. Crit. Rev. Microbiol. 19:99-115. https://doi.org/10.3109/10408419309113525
  146. Yanke, L. J., L. B. Selinger and K.-J. Cheng. 1995. Comparison of cellulolytic and xylanolytic activities of anaerobic rumen fungi. Proceedings, 23rd Biennial Conf Rumen Function, Chicago, IL. p. 32.
  147. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 1999. Effects of an enzyme feed additive on extent of digestion and milk production of lactating dairy cows. J. Dairy Sci. 82:391-403. https://doi.org/10.3168/jds.S0022-0302(99)75245-8
  148. Yang, W. Z., K. A. Beauchemin and L. M. Rode. 2000. A comparison of methods of adding fibrolytic enzymes to lactating cow diets. J. Dairy Sci. 83:2512-2520. https://doi.org/10.3168/jds.S0022-0302(00)75143-5
  149. Yu, P., J. T. Huber, C. B. Theurer, K. H. Chen, L. G. Nussion and Z. Wu. 1997. Effect of steam-flaked or steam-rolled corn with or without Aspergilluas oryzae in the diet on performance of dairy cows fed during hot weather. J. Dairy Sci. 80:3293-3297. https://doi.org/10.3168/jds.S0022-0302(97)76304-5

Cited by

  1. Effect of source and dose of probiotics and exogenous fibrolytic enzymes (EFE) on intake, feed efficiency, and growth of male buffalo (Bubalus bubalis) calves vol.42, pp.6, 2010, https://doi.org/10.1007/s11250-010-9559-5
  2. Effect of non-starch-polysaccharide-degrading enzymes as feed additive on the rumen bacterial population in non-lactating cows quantified by real-time PCR vol.97, pp.6, 2013, https://doi.org/10.1111/jpn.12020
  3. Effects of Aspergillus Oryzae Culture and 2-Hydroxy-4-(Methylthio)-Butanoic Acid on In vitro Rumen Fermentation and Microbial Populations between Different Roughage Sources vol.27, pp.9, 2014, https://doi.org/10.5713/ajas.2013.13742
  4. Effect of temperature and pre-incubation time of fibrolytic enzymes on in vitro degradability of Brachiaria (Brachiaria decumbens) vol.54, pp.10, 2014, https://doi.org/10.1071/AN14262
  5. Effects of feeding different levels of corn steep liquor on the performance of fattening lambs vol.100, pp.1, 2015, https://doi.org/10.1111/jpn.12342
  6. Improving the performance of dairy cattle with a xylanase-rich exogenous enzyme preparation vol.99, pp.5, 2016, https://doi.org/10.3168/jds.2015-10082
  7. Isolation and identification of a cellulolytic Enterobacter from rumen of Aceh cattle vol.10, pp.12, 2017, https://doi.org/10.14202/vetworld.2017.1515-1520
  8. Impact of Chestnut and Quebracho Tannins on Rumen Microbiota of Bovines vol.2017, pp.2314-6141, 2017, https://doi.org/10.1155/2017/9610810
  9. Associations of rumen parameters with feed efficiency and sampling routine in beef cattle pp.1751-732X, 2017, https://doi.org/10.1017/S1751731117002750
  10. Effects of urea plus nitrate pretreated rice straw and corn oil supplementation on fiber digestibility, nitrogen balance, rumen fermentation, microbiota and methane emissions in goats vol.10, pp.1, 2019, https://doi.org/10.1186/s40104-019-0312-2
  11. Caecal fermentation patterns in vitro of glucose, cellobiose, microcrystalline cellulose and NDF separated from alfalfa hay in the adult rabbit vol.162, pp.3, 2002, https://doi.org/10.1016/j.anifeedsci.2010.09.008
  12. Effect of Glucose Levels and N Sources in Defined Media on Fibrolytic Activity Profiles of Neocallimastix sp. YQ1 Grown on Chinese Wildrye Grass Hay or Alfalfa Hay vol.24, pp.3, 2002, https://doi.org/10.5713/ajas.2011.10338
  13. The modification of glucose levels and N source in the Hungate's medium to stimulate the production of fibrolytic enzymes of Anaeromyces sp. YQ3 grown on corn stalks vol.171, pp.2, 2002, https://doi.org/10.1016/j.anifeedsci.2011.10.009
  14. Insight into Enzymatic Degradation of Corn, Wheat, and Soybean Cell Wall Cellulose Using Quantitative Secretome Analysis of Aspergillus fumigatus vol.15, pp.12, 2002, https://doi.org/10.1021/acs.jproteome.6b00465
  15. The in vitro digestion of neutral detergent fibre and other ruminal fermentation parameters of some fibrous feedstuffs in Damascus goat (Capra aegagrus hircus) vol.28, pp.2, 2002, https://doi.org/10.22358/jafs/108990/2019
  16. Effects of sodium selenite addition on ruminal fermentation, microflora and urinary excretion of purine derivatives in Holstein dairy bulls vol.103, pp.6, 2002, https://doi.org/10.1111/jpn.13193
  17. Corn oil supplementation enhances hydrogen use for biohydrogenation, inhibits methanogenesis, and alters fermentation pathways and the microbial community in the rumen of goats vol.97, pp.12, 2002, https://doi.org/10.1093/jas/skz352
  18. Change of Endoglucanase Activity and Rumen Microbial Community During Biodegradation of Cellulose Using Rumen Microbiota vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.603818
  19. Characterization of the Rumen Microbiota and Volatile Fatty Acid Profiles of Weaned Goat Kids under Shrub-Grassland Grazing and Indoor Feeding vol.10, pp.2, 2002, https://doi.org/10.3390/ani10020176
  20. Effects of Urtica cannabina to Leymus chinensis Ratios on Ruminal Microorganisms and Fiber Degradation In Vitro vol.10, pp.2, 2002, https://doi.org/10.3390/ani10020335
  21. Liquid hot water treatment of rice straw enhances anaerobic degradation and inhibits methane production during in vitro ruminal fermentation vol.103, pp.5, 2002, https://doi.org/10.3168/jds.2019-16904
  22. Effects of rumen-protected folic acid and betaine supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls vol.123, pp.10, 2002, https://doi.org/10.1017/s0007114520000331
  23. The digestion of galactolipids and its ubiquitous function in Nature for the uptake of the essential α-linolenic acid vol.11, pp.8, 2002, https://doi.org/10.1039/d0fo01040e
  24. Effects of guanidinoacetic acid supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Angus bulls vol.14, pp.12, 2002, https://doi.org/10.1017/s1751731120001603
  25. Metagenomic analysis reveals a dynamic microbiome with diversified adaptive functions to utilize high lignocellulosic forages in the cattle rumen vol.15, pp.4, 2002, https://doi.org/10.1038/s41396-020-00837-2
  26. Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study vol.11, pp.8, 2002, https://doi.org/10.3390/catal11080964
  27. Effects of riboflavin supplementation on performance, nutrient digestion, rumen microbiota composition and activities of Holstein bulls vol.126, pp.9, 2002, https://doi.org/10.1017/s0007114520005243
  28. Synthesis, Evaluation, and Characterization of an Ergotamine Imprinted Styrene-Based Polymer for Potential Use as an Ergot Alkaloid Selective Adsorbent vol.6, pp.45, 2021, https://doi.org/10.1021/acsomega.1c02158
  29. Effects of Selenium Supplementation on Rumen Microbiota, Rumen Fermentation, and Apparent Nutrient Digestibility of Ruminant Animals: A Review vol.8, pp.1, 2002, https://doi.org/10.3390/fermentation8010004