• Title/Summary/Keyword: Lignin degradation

Search Result 160, Processing Time 0.025 seconds

Productivity and Nutritive Values of Different Fractions of Oil Palm (Elaeis guineensis) Frond

  • Islam, M.;Dahlan, I.;Rajion, M.A.;Jelan, Z.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1113-1120
    • /
    • 2000
  • Productivity, nutrient contents, in vitro gas production and in sacco degradability of different fractions and whole OPF were determined to assess the feeding value of OPF as a ruminant feed. An in vivo digestibility trial was also carried out using goat. Freshly harvested OPF was randomly collected, partitioned and weighed. An OPF from 21 years older palm weighed 13.4 kg and the annual fresh matter yield of petiole, leaflet and midrib was 46.5, 11.8 and 3.4 ton/ha, respectively. Leaflet contained 439, 926, 698, 501, 168, 196, 748 and 52 (g/kg) of dry matter (DM), organic matter (OM), neutral detergent fiber (NDF), acid detergent fiber (ADF), cellulose (CE), hemicellulose (HC), total carbohydrate (TC) and non fiber carbohydrate (NFC), respectively. Petiole contained lower (p<0.01) DM, CP and EE contents than leaflet. Organic matter, CE and TC contents were higher (p<0.01) in petiole compared to leaflet. Silica and lignin contents were highest (p<0.01) in midrib followed by leaflet, whole OPF and least in petiole. The Ca, P, Na, K and Mg contents (g/100 g DM) of leaflet were 0.529, 0.182, 0.039, 0.876, and 0.168, respectively. In vitro DM digestibility (g/100 g) at 48 h of leaflet, petiole and midrib was 32.7, 38.7 and 30.2, respectively. The in sacco DM degradation (g/100 g) at 48 h of leaflet was higher than that of whole OPF, petiole and midrib. The in vivo digestibility of DM, OM, CP and ADF of whole OPF was 52, 56, 43 and 26%, respectively. It can be concluded that leaflet is the most nutritious fraction of OPF and midrib is the least. The nutrient content and digestibility of the whole OPF showed that OPF could be an alternative roughage source for ruminant diets.

The Laccase Activity of Trametes versicolor during Cultivation on Acetylated Wood and 13C-CP/MAS NMR Study (아세틸화 처리 목재에 배양시킨 Trametes versicolor의 Laccase활성과 13C-CP/MAS NMR 분석)

  • Son, Dong-Won;Lee, Dong-Heub
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.60-66
    • /
    • 2001
  • For examine anti-degradation factors of acetylated wood, acetylated wood was incubated on Trametes versicolor. The laccase activity was examined in broth culture and solid fermentation that contain acetylated chips. The change of acetyl groups and chemical composition in the acetylated wood having massloss analysed by $^{13}C$-CP/MAS NMR. The laccase activity was detected in broth culture. When the T. versicolor contact to acetylated wood directly, the laccase activity was very low and couldn't maintain during test periods. Through the analysing of $^{13}C$-CP/MAS NMR, the acetylation took place carbohydrates as well as lignin and hydroxyl group of amorphous region was more easily substituted that of crystalline region The spectral analyses of $^{13}C$-CP/MAS NMR were shown that introduced acetyl bond was stable against fungal attack.

  • PDF

Purification and Characterization of an Intracellular NADH: Quinone Reductase from Trametes versicolor

  • Lee, Sang-Soo;Moon, Dong-Soo;Choi, Hyoung-T.;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • Intracellular NADH:quinone reductase involved in degradation of aromatic compounds including lignin was purified and characterized from white rot fungus Trametes versicolor. The activity of quinone reductase was maximal after 3 days of incubation in fungal culture, and the enzyme was purified to homogeneity using ion-exchange, hydrophobic interaction, and gel filtration chromatographies. The purified enzyme has a molecular mass of 41kDa as determined by SDS-PAGE, and exhibits a broad temperature optimum between $20-40^{\circ}C$, with a pH optimum of 6.0. The enzyme preferred FAD as a cofactor and NADH rather than NADPH as an electron donor. Among quinone compounds tested as substrate, menadione showed the highest enzyme activity followed by 1,4-benzoquinone. The enzyme activity was inhibited by $CuSO_4,\;HgCl_2,\;MgSO_4,\;MnSO_4,\;AgNO_3$, dicumarol, KCN, $NaN_3$, and EDTA. Its $K_m\;and\;V_{max}$ with NADH as an electron donor were $23{\mu}M\;and\;101mM/mg$ per min, respectively, and showed a high substrate affinity. Purified quinone reductase could reduce 1,4-benzoquinone to hydroquinone, and induction of this enzyme was higher by 1,4-benzoquinone than those of other quinone compounds.

Chemical Components, Antitermite and Antifungal Activities of Cinnamomum parthenoxylon Wood Vinegar

  • ADFA, Morina;ROMAYASA, Ari;KUSNANDA, Arif Juliari;AVIDLYANDI, Avidlyandi;YUDHA S., Salprima;BANON, Charles;GUSTIAN, Irfan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.107-116
    • /
    • 2020
  • Termiticidal and fungicidal activities of wood vinegar from Cinnamomum parthenoxylon (CP) stem wood have been evaluated against Coptotermes curvignathus and wood rotting fungi (Schizophyllum commune and Fomitopsis palustris). The utilized CP wood vinegar was produced in the operating temperature range 250-300℃ pyrolysis. A no-choice test was applied for evaluating termiticidal activity with 33 active termites and antifungal activity using the agar media assay. The result showed that an increase in the concentrations of CP wood vinegar significantly raised the mortality of termite. CP wood vinegar showed high termiticidal activity, organic acids (acetic acid 42.91%, 3-butenoic acid 6.89%, butanoic acid, 2-propenyl ester 2.26%), and ketones (1-hydroxy-2-propanone 5.14%, 3-methylcyclopentane-1,2-dione 2.34%) might be largely contributed to termiticidal activity in addition to other minor components. Furthermore, CP wood vinegar exhibited significant inhibition of fungal growth. These data showed that CP wood vinegar was more toxic to white-rot fungi (S. commune) than brown-rot (F. palustris). The results suggested that phenolic compounds from lignin degradation were responsible for good antifungal activity.

Study on The Thermochemical Degradation Features of Empty Fruit Bunch on The Function of Pyrolysis Temperature (반응온도에 따른 팜 부산물(empty fruit bunch)의 열화학적 분해 특성에 관한 연구)

  • Lee, Jae Hoon;Moon, Jae Gwan;Choi, In-Gyu;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.350-359
    • /
    • 2016
  • We performed fast pyrolysis of empty fruit bunch (EFB) in the range of temperature from $400{\sim}550^{\circ}C$ and 1.3 s of residence time. The effect of temperature on the yields and physicochemical properties of pyrolytic products were also studied. Elemental and component analysis of EFB showed that the large amount of potassium (ca. 8400 ppm) presents in the feedstock. Thermogravimetric analysis suggested that the potassium in the feedstock catalyzed degradation of cellulose. The yield of bio-oil increased with increasing temperature in the range of temperature from $400{\sim}500^{\circ}C$, while that of gas and biochar decreased and showed monotonous change each with increasing temperature. When the EFB was pyrolyzed at $550^{\circ}C$, the yield of bio-oil and char decreased while that of gas increased. Water content of the bio-oils obtained at different temperatures was 20~30% and their total acid number were less than 100 mg KOH/g oil. Viscosity of the bio-oils was 11 cSt (centistoke), and heating value varied from 15 to 17 MJ/kg. Using GC/MS analysis, 27 chemical compounds which were classified into two groups (cellulose-derived and lignin-derived) were identified. Remarkably the concentration of phenol was approximately 25% based on entire chemical compounds.

Biodegradation of aromatic dyes and bisphenol A by Trametes hirsuta (Wulfen) Pilat (흰구름버섯에 의한 방향족 염료와 비스페놀 A의 분해)

  • Im, Kyung-Hoan;Baek, Seung-A;Choi, Jae-hyuk;Lee, Tae-Soo
    • Journal of Mushroom
    • /
    • v.17 no.4
    • /
    • pp.247-254
    • /
    • 2019
  • Trametes hirsuta, a white rot fungus, exhibits the ability to degrade synthetic aromatic dyes such as congo red (CR), methylene blue (MB), crystal violet (CV), and remazol brilliant blue R (RBBR). The mycelia of T. hirsuta degraded RBBR and CR more efficiently than CV and MB in the PDB liquid medium (supplemented with 0.01% 4 aromatic dyes). In these mycelia the activities of three ligninolytic enzymes-laccase, manganese peroxidase (MnP), and lignin peroxidase (LiP)-were observed. Among these, laccase was identified to be the major enzyme responsible for the degradation of the four aromatic dyes. The degradation of bisphenol A was also investigated by culturing the mycelia of T. hirsuta in YMG medium supplemented with 100 ppm bisphenol A. The mycelia of T. hirsuta were found to degrade bisphenol A by 71.3, 95.3, and 100 % within incubation periods of 12, 24, and 36 hr, respectively. These mycelia also showed ligninolytic enzyme-like activities including those similar to laccase, MnP, and LiP. Therefore, these results indicate that T. hirsuta could emerge as a potential tool for the remediation of environmental contamination by aromatic dyes and bisphenol A.

Enhanced Anaerobic Degradation of Food Waste by Employing Rumen Microorganisms (Rumen 미생물을 이용한 주방폐기물 혐기성소화의 효율증진 방안)

  • Shin, Hang-Sik;Song, Young-Chae;Son, Sung-Sub;Bae, Byung-Uk
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.1 no.1
    • /
    • pp.103-113
    • /
    • 1993
  • Every year, over $3.37{\times}10^7$ ton of municipal solid waste is generated in Korea, of which about 28% is organic food waste from restaurant, dining halls and households etc. Methane conversion of the food waste by anaerobic digestion could be a viable approach for energy recovery as well as safe disposal of the waste. However, as food waste is composed of highmolecular complex polymers such as cellulose, lignin and protein, anaerobic digestion of food waste has not been efficient in terms of volumetric loading rate, solid retention time and extent of anaerobic degradation. In this research, the improved anaerobic degradation of food waste was attemped by applying rumen microorganisms to anaerobic digestion. Acidification efficiency of food waste by rumen microorganisms was compared with that of conventional acidogenesis. And optimum acidification conditions by rumen microorganisms were also determined. For the experiments, anaerobic batch reactors of 600 mL was fed with the processed (dried and milled) food waste obtained from a restaurant. Ultimate volatile fatty acid (VFA) yield produced by rumen microorganisms was about 8.4 meq VFA/g volatile solid (VS) that is 95% of the theoretical value. This yield was not much different from that of conventional acidogenesis, but hydrolysis rate was about twice faster. Cumulative VFA concentration increased from 66 meq/L to 480 meq/L, when the initial TS was increased from 1% to 15%. But VFA yield at 15% TS was half of that at 1% TS. This inhibition on the acidification might be caused by the rapid drop of pH and higher concentration of nonionized VFA. Optimal pH and temperature range for the acidification were about 6.0~7.5 and $35{\sim}45^{\circ}C$, respectively.

  • PDF

The effect of environmental condition to the mycelial browning of Lentinula edodes (Berkeley) Sing. during sawdust bag cultivation (환경조건이 표고톱밥배지의 갈변에 미치는 영향)

  • Kim, Young-Ho;Jhune, Chang-Sung;Park, Soo-Chul;You, Chang-Hyun;Sung, Jae-Mo;Kong, Won-Sik
    • Journal of Mushroom
    • /
    • v.7 no.3
    • /
    • pp.115-121
    • /
    • 2009
  • Recently sawdust cultivation of Shiitake mushroom (Lentinula edodes ) is getting increased because log cultivation is getting difficult to get oak logs. It is important to make mycelia browning on the substrate surface in sawdust cultivation. This browned surface plays an important role like as artificial bark of the oak log, which protects the other pests and suppresses water evaporation in the substrate. The period for mycelia browning is so long that the sawdust cultivation of Shiitake mushroom can not spread well into the mushroom farms. In this article we would like to discuss about the effect of environmental condition to the mycelial browning during sawdust bag cultivation for the To reduce the period required for browning of substrates, sawdust substrates was illuminated light with difference intensity. One hundred Lux light illumination was needed for producing normal yield of fruit body but fruit body yield was low and abnormally shaped fruit body was produced when cultured under the dark condition of incubation. Illumination over 200lux is necessary for the successful browning of substrates during incubation. Optimum incubation temperature for browning of substrates and fruiting was $25^{\circ}C$. The treatment of cotton plug with different size to identify the effect of aeration on the browning of substrates and fruiting showed rapid mycelial growth and reduced the periods for browning as the size of cotton plug was bigger. However, yield of fruit body was the highest at 16mm diameter cotton plug as compared to 20mm of that. $CO_2$ content in vessel of substrates was low as the size of cotton plug was bigger during incubation. $CO_2$ content during incubation of substrate was highest in periods between 8 week and 14 week after inoculation of shiitake when substrate was changed color into brown. $C_2H_4$ content in vessel with substrates was highest at 8mm diameter cotton plug and it was increased by order of 12, 16, 20, 0, 4 mm diameter cotton plug during substrate incubation. Sawdust substrate was soaked in cold water for different time to identify soaking effect of sawdust substrate on fruit body yield and activities of enzymes in these substrates were investigated. The fruit body yield was increased up to 40% by soaking substrates in comparison with unsoaked substrates. The soaked substrates showed 165, 175g/1,000ml at treatment of 4 and 15 hours, respectively. Cellulose activities in soaked substrates were not changed with soaking time, but activities of laccase, lignin degradation enzyme, were drastically increased up to 4 times in comparison with unsoaked substrates.

  • PDF

Optimization of Solid State Fermentation of Mustard (Brassica campestris) Straw for Production of Animal Feed by White Rot Fungi (Ganoderma lucidum)

  • Misra, A.K.;Mishra, A.S.;Tripathi, M.K.;Prasad, R.;Vaithiyanathan, S.;Jakhmola, R.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.2
    • /
    • pp.208-213
    • /
    • 2007
  • The objective of the experiment was to determine the optimum cultural [moisture levels (55, 60 and 70%), days of fermentation (7, 14 and 21), temperature (25 and $35^{\circ}C$) of incubation)] and nutritional parameters (urea addition (0 and 2%) and variable levels of single super phosphate (0.25 and 0.50% SSP)) for bio-processing of the mustard (Brassica campestris) straw (MS) under solid-state fermentation (SSF) system. The performance of SSF was assessed in terms of favorable changes in cell wall constituents, protein content and in vitro DM digestibility of the MS. Sorghum based inoculum (seed culture) of Ganoderma lucidum to treat the MS was prepared. The 50 g DM of MS taken in autoclavable polypropylene bags was mixed with a pre-calculated amount of water and the particular nutrient in the straw to attained the desired levels of water and nutrient concentration in the substrate. A significant progressive increase in biodegradation of DM (p<0.001), NDF (p<0.01) and ADF (p<0.05) was observed with increasing levels of moisture. Among the cell wall constituents the loss of ADF fraction was greatest compared to that of NDF. The loss of DM increased progressively as the fermentation proceeded and maximum DM losses occurred at 28 days after incubation. The protein content of the treated MS samples increased linearly up to the day $21^{th}$ of the incubation and thereafter declined at day $28^{th}$, whereas the improvement in in vitro DM digestibility were apparent only up to the day $14^{th}$ of the incubation under SSF and there after it declined. The acid detergent lignin (ADL) degradation was slower during the first 7 days of SSF and thereafter increased progressively and maximum ADL losses were observed at the day $28^{th}$ of the SSF. The biodegradation of DM and ADL was not affected by the variation in incubation temperature. Addition of urea was found to have inhibitory effect on fungal growth. The effect of both the levels (0.25 and 0.50) of SSP addition in the substrate, on DM, NDF, ADF, cellulose and ADL biodegradation was similar. Similarly, the protein content and the in vitro DM digestibility remain unaffected affected due to variable levels of the SSP inclusion in the substrate. From the results it may be concluded that the incubation of MS with 60 percent moisture for 21 days at $35^{\circ}C$ with 0.25 percent SSP was most suitable for MS treatment with Ganoderma lucidum. Maximum delignification, enrichment in the protein content and improvement in in vitro DM digestibility were achieved by adopting this protocol of bioprocessing of MS.

Investigation of Physicochemical Properties of Bio-oils Produced from Pitch Pine (Pinus rigida) at Various Temperatures (열분해 온도에 따른 리기다소나무 바이오오일의 물리·화학적 특성 평가)

  • Kim, Tae-Seung;Kim, Jae-Young;Oh, Shin-Young;Hwang, Hye-Won;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2012
  • In this study, fast pyrolysis of pitch pine (Pinus rigida) was performed in a fluidized bed reactor under the temperature ranges between 400 and $550^{\circ}C$ at the residence time of 1.9 sec. Essential pyrolytic products (bio-oil, biochar, and gas) were produced and their yield was clearly influenced by temperature. The maximum yield of bio-oil was observed to 64.9 wt% (wet basis) at the temperature of $500^{\circ}C$. As pyrolysis temperature increased, the yield of biochar decreased from 36.8 to 11.1 wt%, while gas amount continuously increased from 16.1 to 33.0 wt%. Water content as well as heating value of bio-oils were obviously sensitive to the pyrolysis temperature. The water contents in the bio-oil clearly decreased from 26.1 ($400^{\circ}C$) to 11.9 wt% ($550^{\circ}C$), with increasing the fast pyrolysis temperature, while their higher heating values were increased from 16.6 MJ/kg to 19.3 MJ/kg. According to GC/MS analysis, 22 degradation compounds were identified from the bio-oils and 10 compounds were derived from carbohydrate, 12 compounds were derived from lignin.