• Title/Summary/Keyword: Lightweight process

Search Result 479, Processing Time 0.029 seconds

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

Protective Mechanism for Sensitive Data using Lightweight Process Tracking (경량화 프로세스 추적을 통한 중요 데이터 유출 방지)

  • Kang, Koo-Hong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.5
    • /
    • pp.33-39
    • /
    • 2009
  • As the usage of computers and mobile handsets is popularized, the processing and storing of private and business data are increased. Hence we note that these sensitive data should never be transferred out of these personal devices without user's permission. In this paper, we propose a simple method to prevent transferring the sensitive data out of personal computing devices through their networking interfaces. The proposed method determines which processes invoke open system call related to the sensitive data, and then traces them within a specific duration. The proposed scheme has advantage over the existing ones using authentication or encryption because it could be still working well independent upon the new attack technologies or the latest vulnerabilities of hardware and software. In order to verify the proposed algorithm, we test it by implementing the necessary codes at the user and kernel spaces of Linux.

High-Performing Adhesive Bonding Fastening Technique For Automotive Body Structures

  • Symietz, Detlef;Lutz, Andreas
    • Journal of Adhesion and Interface
    • /
    • v.7 no.4
    • /
    • pp.60-64
    • /
    • 2006
  • In modern vehicle construction the search for means of weight reduction, improving durability, increasing comfort and raising body stiffness are issues of priority to the design engineer. The intelligent usage of many materials such as high strength steel, light-alloys and plastics enables a significant vehicle weight reduction to be achieved. The classical joining techniques used in the automobile industry need to be newly-evaluated since they often do not present workable solutions for such mixed-material connections, for example aluminium/steel. Calculation/simulation methods have made progress as a key factor for broader and more cost-effective implementation of structural bonding. This will lead to reduction of spotwelds and accelerate the car development. A special focus of the paper is the use of high strength steel grades. It will be shown that adhesive bonding is a key tool for yielding the potential of advanced high strength steel for low gauging without compromising the stiffness. The latest status of adhesive development has been described. Improvements with physical strength and glass temperature as well as of process relevant properties are shown. Also the situation regarding occupational hygiene is treated, showing that by further spotweld point reduction the emission around the working area can be even lowered against the current praxis. High performing lightweight design cannot longer do without high performing crash durable adhesives.

  • PDF

Study on Weldability of A5052-H32 Sheet using Nd : YAG Laser-MIG Hybrid Welding (하이브리드(CW Nd : YAG Laser + MIG) 용접을 이용한 A5052-H32 맞대기 용접부의 역학적 특성에 관한 연구)

  • Kim, Jun-Hyung;Bang, Han-Sur;Bijoy, M.S.;Jeon, Geun-Hong;You, Jea-Sun;Bang, Hee-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.92-96
    • /
    • 2010
  • Recently, the application of aluminum alloys has been increasing for lightweight and high quality transport vehicles. Therefore, the proposal has been made to apply high speed hybrid welding methods to the marine grade aluminum alloy (A5052) used for shipbuilding by combining a 3-KW CW Nd : YAG laser and the MIG welding process. In this study, the characteristics of the welding parameters were investigated for a hybrid butt joint. This paper also describes the determination of the heat distribution in a weldment and the welding residual stress using a finite element method. Mechanical experimentation was also used to ascertain the reliability of the weldment.

Characterization of Lightweight Earthenware Tiles using Foaming Agents

  • Lee, Won-Jun;Cho, Woo-Suk;Hwang, Kwang-Taek;Kim, Jin-Ho;Hwang, Hae-Jin;Lee, Yong-Ouk
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.473-478
    • /
    • 2015
  • Green bodies of earthenware tile were prepared from a mixture of earthenware tile powder and SiC as forming agents by applying a conventional process. Granule powder for tile samples was prepared using the spray drying method with commercial earthenware raw material with a quantity of SiC of 0.3 wt%. The applied pressure was $250kg{\cdot}f/m^2$ and the firing temperature was $1050-1200^{\circ}C$. The effects of the SiC particle size and sintering temperature on the open porosity and total porosity were investigated and the correlative mechanism was also discussed. While total porosity was not significantly changed by decreasing the SiC particle size, the open porosity showed a gradual decrease, which represents an increase of the closed porosity. As the sintering temperature increased, coarsening was made among the pores due to excessive oxidation. The volume shrinkage and bending strength were demonstrated for the sintered tile samples. The sintered bulk density was also measured to determine the weight reduction value.

Performance Evaluations of Mock-up Tests for ALC Panel Curtain Wall in Building Exterior (ALC 패널을 활용한 건축물 외장 커튼월에 대한 Mock-up Test 성능 평가 연구)

  • Kim, Young-Ho;Lee, Yong-Soo
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.25-32
    • /
    • 2013
  • The green building is one of biggest factors to go the goal of energy saving and environmental conservation, reduction of energy consumption, friendly energy technology, recycling of resource, and environmental pollution reduction technology. The purpose of these green buildings realized by the energy-saving technology such as the exterior materials or curtain wall system. The curtain wall system is a element that come to insulated portions of building envelope that results in heat loss. The purpose of this paper is to carried out mock-up tests for exterior wall used in autoclaved lightweight concrete panels in green building practices. Mock-up test execute a mixed process between standard test procedure and complex test procedure based on AAMA 501(American Society for Testing and Materials) and ASTM 283, ASTM 330(American Society for Testing and Materials). In results, tests meet the requirements that grant values in steps of procedures provided on ASTM and AAMA. ALC panel is suitable for a exterior wall product to be gratified thermal cycling performance and structural capacity, deflection(H/200) and lateral displacement(H/50), for curtain walls.

The Influence of The Burr Reduction by The Chemical Reaction of Oxide Film on Aluminum (알루미늄 박막의 표면화학반응이 버 감소에 미치는 영향)

  • 이현우;박준민;정상철;정해도;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.907-910
    • /
    • 1997
  • With increasing the needs for micro and precision parts, micro machining technology has been studied to fabricate a small part with high density such as electronics, optics, communications, and medicine industry more than before. But there are many problems to be solved requiring a high-level technology. So this research presents the new method to fabricate a small part through applying chemical mechanical micro machining (C3M) for the Al wafer. Al(thickness I ,u m) was sputtered on the Si substrate. Al is widely used as a lightweight material. However form defect such as burr has a bad effect on products. To improve machinability of ductile material, oxide layer was formed on the surface of AI wafcr before grooving by chemical reaction with HN03(10wt%). And then workpieces were machined to compare conventional micro-machining process with newly suggested method at different machining condition such as load and feed rate. To evaluate whether or not the machinability was improved by the effect of chemical condition, such as the size, the width of grooves 'and burr generation were measured. Finally, it is confirmed that C3M is one of the feasible tools for micro machining with the aid of effect of the chemical reaction.

  • PDF

Optimal Design for CNG Composite Pressure Vessel Using Basalt Fiber (현무암 섬유를이용한 CNG 복합재 압력용기의 최적설계)

  • Jang, Hyo Seong;Bae, Jun Ho;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.3
    • /
    • pp.269-277
    • /
    • 2015
  • Compressed natural gas (CNG) composite vessels for vehicles have been generally made of 34CrMo4 for a inner liner part and E-glass/epoxy for a composite layer part. But, there is a problem of material loss of CNG composite vessels used in vehicles due to the design of excessive thickness of the liner. And, light weight of the CNG composite vessel is required for improving fuel efficiency. In this study, optimal design for CNG composite pressure vessel was performed by using basalt fiber, which is the environment-friendly material having a good mechanical strength. The optimal thickness of each part (inner liner and composite layer) was determined by theoretical analysis and FEA for satisfying structural safety and lightweight of the vessel. Also, for improving fatigue life, optimal autofrettage pressure was derived from FEA results.

A Study of Static Unstable Behavioral Characteristics of Cable Dome Structures according to the Structural System (구조시스템에 따른 케이블 돔의 정적 불안정거동 특성에 관한 연구)

  • Cho, In-Ki;Kim, Hyung-Seok;Kim, Seung-Deog;Kang, Moon-Myung
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.131-138
    • /
    • 2004
  • The cable structure is a kind of ductile structural system using the tension cable and compression column as a main element. From mechanical characteristics of the structural material, it is profitable to be subjected to the axial forces than bending moment or shear forces. And we haweto consider the local buckling when it is subjected to compression forces, but tension member can be used until the failure strength. So we can say that the tension member is the most excellent structural member. Cable dome structures are made up of only the tension cable and compression column considering these mechanical efficiency and a kind of structural system. In this system, the compression members are connected by using tension members, not connected directly each other. Also, this system is lightweight and easy to construct. But, the cable dome structural system has a danger of global buckling as external load increases. That is, as the axisymmetric structure is subjected to the axisymmetric load, the unsymmetric deformation mode is happened at some critical point and the capacity of the structure is rapidly lowered by this reason. This phenomenon Is the bifurcation and we have to reflect this in the design process of the large space structures. In this study, We investigated the nonlinear unstable phenomenon of the Geiger, Zetlin and Flower-type cable dome.

  • PDF

Consolidation of Incineration Fly Ash by Solvothermal Reaction

  • Masuda, Kaoru;Endoh, Shigehisa
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.655-658
    • /
    • 2001
  • The generation of fly ash tends to increase yearly so that this is currently considered a big environmental concern, which requires appropriate treatment approaches. In this research the consolidation of incineration fly ash by the hot-press solvothermal reaction was investigated to provide an alternative process for the treatment and utilization of this waste material. Results showed that at reaction conditions of 52 K treatment, 20 ㎫ pressure and 60 minutes treatment time, the resulting consolidate exhibited a compressive ness strengths of 37-40 ㎫, a tensile strength of 6.5-7.0 ㎫ and a Rockwell hardness of 20-23 RH15W. These properties are comparable to the compressive ness strength of Portland cement which ranges from 30-40 ㎫ as well as with the tensile strengths of mortar, ganite, artificial lightweight aggregate and solidified high connote whose values are 2-2.5 ㎫, 5-9 ㎫, 5-10 ㎫ and 3-5 ㎫ respectively- Furthermore, by mixing fly ash with glass at 50% ratio and then subjecting to similar treatment conditions, a consolidate with even higher tensile strength of 12.5-13.3 ㎫ and hardness of 77-80 RH15W may be achieved.

  • PDF