• Title/Summary/Keyword: Lightweight fine aggregate

Search Result 51, Processing Time 0.029 seconds

A Study on the Properties of the Concrete Containing Fly-ash of Class F According to the 3 Different Mixture Design (F급 플라이애쉬의 혼입방법을 달리한 콘크리트 특성에 관한 실험적 연구)

  • Moon, Jong-Wook;Yoo, Taek-Dong;Seo, Chee-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.2
    • /
    • pp.191-198
    • /
    • 1999
  • The purpose of this study is investigating characteristics of the concrete containing Fly-ash according to different 4 mix design, that is, the first mix design is partial replace Fly-ash of cement, second is partial replace Fly-ash of cement and fine aggregate, third is partial replace Fly-ash of fine aggregate, fourth partial replacement of fine and coarse aggregate. For this purpose, selected test variables were water-binder ratio with two levels of 45%, 50%, and Fly-ash contents with four levels 0%, 10%, 20%, 30%, As the result of this study are as follow. 1) The result of mix design of a partial replacement of cement, the slump-flow value was appeared a promotive effect of viscosity. But in case of the over with Fly-ash 10% and the other mix design was not changed slump value. 2) The unit weight of the mixing rate with Fly-ash 0% was $1.875{\sim}1.884t/m^3$, the other mix design 10% over with Fly-ash was $1.846{\sim}1.615t/m^3$, the difference was appeared less about 15% than that. 3) In design, partial replace Fly-ash of fine aggregate, this compressive strength was appeared that the concrete age after 7 days was higher than in partial replacement of cement, therefore, the default of a concrete with Fly-ash, that is the earlier compressive strength was to lessen, was improved. 4) The thermal conductivity of the all mix design was $0.447{\sim}1.144kcal/mh^{\circ}C$, this value was as good as a lightweight aggregate concrete.

  • PDF

Compressive Strength Properties Surface Coating Lightweight Aggregate ITZ using Inorganic Materials (무기 재료를 이용한 표면코팅 경량골재 계면 압축강도 특성)

  • Kim, Ho-Jin;Jeong, Su-Mi;Pyeon, Myeong-Jang;Kim, Ju-Sung;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.109-110
    • /
    • 2022
  • Recently, it tend to increase the high-rise and large-scale of buildings and the developtment of construction technology can to be applied reinforced concrete structures to high-rise buildings. However, when a high-rise buildings is constructed with reinforced concrete, it has a disadvantage that buildings weight increases. In order to resolve the weight of reinforced concrete structures, various types of lightweight aggregates become development and research. Although lightweight aggregates can be reduced the weight of concrete, the strength of ITZ(Interfacial Transition Zone) is lowered due to its less strength than natural aggregates. In this study, an experimental study was conducted to coat the surface of lightweight aggregates with GGBFS(ground granulated blast furnace slag) to improve the strength of cement matrix mixed with lightweight aggregates. Result of this experimental study shows that the compressive strnegth of the surface coating lightweight aggregates was higher than general lightweight aggregates. Also, it was considered that this is because the pore at the ITZ of the surface-coated lightweight aggregates mixed cement matrix are filled with GGBFS fine particle.

  • PDF

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.

Shape Improvement and Optimum Gradation of Dry Processed Bottom Ash for Lightweight Mortar (경량 모르터용 건식공정 바텀애시의 입형 개선 효과와 최적 입도)

  • Choi, Hong-Beom;Kim, Jin-Man;Sun, Jung-Soo;Han, Dong-Yeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • The aim of this research is suggesting dry processed bottom ash as a new and economical source of lightweight aggregate for mortar and concrete. The dry process of bottom ash is an advance method of water-free and no chloride because only cooled down by double dry conveyer belt systems. Furthermore, because of relatively slow cooling down process helps burning up the remaining carbon in bottom ash. Using this dry process bottom ash, to evaluate the feasibility of using as a lightweight aggregate for mortar and concrete, two-phase of experiments were conducted: 1) improving shape of the bottom ash, and 2) controlling grade of the bottom ash. From the first phase of experiment, additional abrasing process was conducted for round shape bottom ash, hence improved workability and compressive strength was achieved while unit weight was increased comparatively. Based on the better shape of bottom ash, from the second phase, various grades were adopted on cement mortar, standard grade showed the most favorable results on fresh and hardened properties. It is considered that the results of this research contribute on widening sustainable method of using bottom ash based on the dry process and increasing value of bottom ash as a lightweight aggregate for concrete.

A Fundamental Study on the Influence of Types of Aggregate on the Engineering Properties of EPSB Concrete (EPSB 콘크리트의 공학적 특성에 미치는 골재 종류의 영향에 대한 기초적 연구)

  • Kim Ha Seok;Choi Sun Mi;Gang Cheol;Kawg Eun Gu;Jeong Gab Cheol;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.453-456
    • /
    • 2005
  • The use of lightweight concrete products is usually increased at a recently high structures. Among the rest EPSB concrete products which have an excellence on the sound and thermal insolation are used. Also, the gathering of nature aggregate is limited, so that lack of fine aggregate is appearing. The purpose of this study is to obtain basic data of properties of EPSB concrete in according to types of aggregate. The results of experiment are as follow. The EPSB concrete using bottom ash is appeared the lowest slump in fresh concrete. The EPSB concrete using river sand and bottom ash are showed as a similar compressive strength except it using crushed sand in hardened concrete.

  • PDF

The Examination Fire Resistance of Mortar According to Particle Size Distrivution as Oyster Shell Fine Aggregate (굴 패각의 잔골재 입도분포 변화에 따른 모르타르의 내화성 검토)

  • Choi, In-Kwon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.71-72
    • /
    • 2017
  • The oyster shell is lightweight and exhibits strength characteristics similar to sand. In this study, mortar specimens were fabricated by crushing them and processed to 5mm or less of the fine aggregate standard, and examined the fire resistance of the mortar according to changes in particle size distribution. In this experiment, seven particle size distribution conditions were tested. In addition, the mixing ratio was fixed at 1: 3, and the experiment was conducted in terms of the volume ratio because the densities of sand and oyster shells were different.

  • PDF

Properties of No-coarse Lightweight Concrete Using Synthetic Lightweight Fine Aggregate (인공경량세골재(人工輕量細骨材)를 사용(使用)한 무조골재(無粗骨材) 경량(輕量)콘크리트의 특성(特性))

  • Min, Jeong Ki;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.194-206
    • /
    • 1997
  • This paper was performed to evaluate the properties of no-coarse lightweight concrete using perlite and expanded polystyrene bead on fine aggregate. The results were shown that w/c and unit weight was affected by absorption ratio and unit weight of using aggregate itself. The compressive strength of no-coarse lightweight concrete was showed $187kgf/cm^2$ by using natural sand, $170kgf/cm^2$ by using perlite. Tensile and bending strength were showed the same tendency of compressive strength, but when expanded polystyrene bead concrete dose not have strength nearly. The pulse velocity and static modulus of elasticity of no-coarse lightweight concrete were smaller than that of normal cement concrete. And stress-strain curves were shown that was increased with increase of stress, and when the stress-strain curve using expanded polystyrene bead was repeated at short intervals increase and decrease irregularly.

  • PDF

An Experimental Study on The Thermal Conductivity of Concrete with lots of Porous (다공극을 갖는 콘크리트의 열전도성에 관한 실험적 연구)

  • Baek, Ji-Won;Kim, Se-Hwan;Park, Young-Shin;Jeon, Hyun-Kyu;Seo, Chee-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.103-104
    • /
    • 2012
  • Lately, minimize of the heat loss and fuel consumption when heating so that suggested ways to reduce carbon emissions as a measures to reduce for increase of carbon emission and find a way to apply highly insulated concrete as the measures. In this study, as a comparative experiments on heat conduction of concrete with lots of porous, thermal conductivity of concrete using foamed, polystyrene beads, lightweight aggregates, air-entraining agent and concrete using crushed stone measure and thermal conductivity of concrete with lots of porous compare and evaluate.

  • PDF

The Setting and Strength Characteristics of Lightweight Mortar Using Wood Chips Treated with Water (수처리한 목편을 사용한 경량모르타르의 응결 및 강도특성)

  • Choi, Jae-Jin;Moon, Seung-Kwon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.77-84
    • /
    • 2012
  • It is known that some components of wood obstruct the hydration of cement when wood is mixed with cement. In order to examine the effect of pretreatment of wood chips in hot water, this study conducted the experiments for the setting and compressive strength of mortar by sieving pine wood chips with a 2.4mm sieve, dipping them in waters of different temperatures, and then using them as a part of the fine aggregate. For the experiments, water-cement ratio of the mortar was 0.50 and the amount of the fine aggregate substituted by wood chips was set at 0%, 2%, 4%, 6%, 8%, and 10% of the mass of the fine aggregate. As a result of the test, it was found out that when wood chips were used to substitute fine aggregate for the production of mortar, more usage of wood chips postponed setting more, and the treatment of wood chips with water improved the problem of the delay in setting time. Especially, the final setting time of the mortar which used 2~6% of wood chips treated in $100^{\circ}C$ water for 30 minutes was almost the same as the final setting time of the mortar which used no wood chips. Also, the compressive strength of the mortar which used the wood chips treated with water was compared to that of the mortar which used the wood chips not treated with water. The result showed that the strength improved for age of 7 days and 28 days, while there was little change in strength for age of 3 days.

  • PDF

Development of lightweight Fly ash-Plastic Aggregate (석탄회 및 폐플라스틱을 이용한 인공경량합성골재의 개발)

  • Jo Byung Wan;Park Seung Kook;Park Jong Bin;Jansen Daniel C.
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.380-383
    • /
    • 2004
  • The coarse and fine aggregates that make up the majority of concrete are resources. But, the raw naturals that make up concrete are our earth's resources and there is not a replenishable stock. Also industrial waste and life waste leaped into a pollution source. Therefore, as construction continue, quarries are exhausted and new sources must be discovered. The purpose of this paper is to investigate an application of recycled coal ash plastics in the construction field. The study examined the physical and mechanical properties of recycled coal ash plastics aggregate. In the results, although the absorption and specific gravity of SLAs increases slightly as the fly ash content increases, the compressive strength and modulus of elastic of concrete made with SLAs remains relatively constant when mortar type and volume fraction are also held constant. These values are always lower than natural-weight aggregate concretes.

  • PDF