• 제목/요약/키워드: Lightning surges

검색결과 76건 처리시간 0.031초

정보화 기기용 SPD의 설치조건에 따른 보호효과 (Protection Effects According to the Conditions of Installations of SPDs for Information-Oriented Equipments)

  • 이복희;이동문;정동철;이수봉;이승칠
    • 조명전기설비학회논문지
    • /
    • 제21권1호
    • /
    • pp.35-41
    • /
    • 2007
  • 최근 고품질의 정보통신서비스와 안정한 전력공급에 대한 사회적 요구가 증가하고 있다. 본 연구에서는 뇌서지로부터 정보통신설비를 효과적으로 보호하는 대책을 제안하기 위해서 실규모 실험회로를 적용하여 여러 가지 설치조건에 따른 서지보호기의 보호효과를 실험적으로 조사하였다. 그 결과 전원계통의 접지방식, 분기회로의 수, 접지선의 배선방법 등에 따라 서지보호기의 보호효과는 크게 다른 것으로 밝혀졌다. 정보화 기기용 서지보호기를 설치하는 경우, 전원선과 통신선을 포함하는 공통접지방식과 접지선을 전원선과 일괄하여 금속관 내에 배선하는 것이 서지보호기의 서지차단성능의 향상에 가장 효과적이었다.

송전계통 및 변전소 뇌서지 보호방안 연구 (A Study on the Lightning Surge Protection Methods on Transmission System and Substation)

  • 김재관;정채균;이종범;조한구;서재호
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.279-285
    • /
    • 2005
  • The lightning causes the damage of power system equipments as well as large power failure. Therefore, the insulation design should be established not only to decrease the damage of the facilities itself but also to increase the reliability of electric power system. This paper describes the useful way applying underbuilt ground wire and guy wire in transmission tower that safely protect the substation equipments. One or more shield wires under the phase conductor will not intercept lightning stroke, but they may improve reduce lightning voltages almost as effectively as if they were above the phase conductors. And the guy wires will mitigate the tower surge response. These would not only reduce backflashover possibility but also minimize crest and duration of surges entering the substation. EMTP is used to analyze the efficiency of the proposed methods.

A Study on Lightning Surges in Underground Distribution Systems

  • Jung Chae-Kyun;Kim Sang-Kuk;Lee Jong-Beom
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.171-176
    • /
    • 2005
  • The effects of surge arresters for the protection of transmission systems against direct lightning strokes have already been reviewed by many researchers. However, their studies have not encompassed underground cable systems. Therefore, in this paper we investigate the 22.9kV combined distribution systems that have arresters and ground wires. In addition, we analyze the overvoltages on underground distribution cable sections when direct lightning strokes contact the overhead ground wire using EMTP. Finally, we discuss the effect of lightning strokes according to the change of cable length and installation of arresters. This study provides insulation coordination methods for reasonable system design in 22.9kV underground distribution cable systems.

배전용 피뢰기의 접지도선 설치기법 (The Installation Technique of Grounding Electrode Conductors for Metal Oxide Distribution Surge Arresters)

  • 이복희;유인선;이태룡;안창환;윤중순;윤형희;김재승;김종채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1718-1720
    • /
    • 2001
  • The route of surge arrester connection is very important because bends and kinds of leads increase the impedance to lightning surges and tend to nullify the effectiveness of a grounding electrode conductor. There is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and bonding for 18[kV] metal oxide distribution line arresters was experimentally investigated with lightning and oscillating impulse voltages.

  • PDF

낙뢰 보호용 접지시스템 평가를 위한 고주파 접지임피던스 측정시스템의 설계 및 제작 (Design and Fabrication of High Frequency Ground Impedance Measuring System for Assessment of Grounding System for Lightning Protection)

  • 길형준;송길목;김영석;김종민;김영진
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.47-52
    • /
    • 2016
  • This paper describes the design and fabrication of high frequency ground impedance measuring system for assessment of grounding system for Lightning protection. The ground impedance measuring system has been designed and fabricated which makes it possible to assess the ground impedance by frequency ranges from 100 Hz to 1 MHz. The effective grounding systems having a very low impedance to electromagnetic disturbance such as lightning surges and noises in microelectronics and high-technology branches are strongly required. In order to analyze the dynamic characteristic of grounding system impedances in lightning and surge protection grounding systems, it is highly desirable to assess the ground impedances as a measure of performance of grounding system in which lightning and switching surge currents with fast rise time and high frequency flow. The measuring system is based on the variable frequency power supply and consists of signal circuit part, main control part, data acquisition and processing unit, and voltage and current probe system. The ground impedance measuring system can be used to assess grounding system during occurrence of lightning.

배전피뢰기용 접지도선의 효과적인 설치기법 (Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors)

  • 이복희;강성만;유인선
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권6호
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

특별저전압 직류 전원회로에 유용한 서지방호장치의 설계와 특성 (Design and Behavior of Validating Surge Protective Devices in Extra-low Voltage DC Power Lines)

  • 심서현;이복희
    • 조명전기설비학회논문지
    • /
    • 제29권3호
    • /
    • pp.81-87
    • /
    • 2015
  • In order to effectively protect electrical and electronic circuits which are extremely susceptible to lightning surges, multi-stage surge protection circuits are required. This paper presents the operational characteristics of the two-stage hybrid surge protection circuit in extra-low voltage DC power lines. The hybrid surge protective device consists of the gas discharge tube, transient voltage suppressor, and series inductor. The response characteristics of the proposed hybrid surge protective device to combination waves were investigated. As a result, the proposed two-stage surge protective device to combination wave provides the tight clamping level of less than 50V. The firing of the gas discharge tube to lightning surges depends on the de-coupling inductance and the rate-of-change of the current flowing through the transient voltage suppressor. The coordination between the upstream and downstream components of the hybrid surge protective device was satisfactorily achieved. The inductance of a de-coupler in surge protective circuits for low-voltage DC power lines, relative to a resistance, is sufficiently effective. The voltage drop and power loss due to the proposed surge protective device are ignored during normal operation of the systems.

보호거리와 부하 유형에 따른 SPD의 보호효과에 대한 실험적 고찰 (Experimental Examinations on Protective Effects of SPDs Associated with the Protective Distance and Type of Load)

  • 이복희;김유하;안창환
    • 조명전기설비학회논문지
    • /
    • 제26권10호
    • /
    • pp.81-88
    • /
    • 2012
  • Surge protective devices(SPDs) are widely used as a most effective means protecting the electrical and electronic equipment against overvoltages such as lightning and switching surges. When installing SPDs, it is essential that the voltage protection level provided by SPDs should be lower than the withstand voltage of the equipment being protected. But even the proper selection of SPDs are achieved, the voltage at the equipment terminal may be higher than the residual voltage of SPD due to the reflection and oscillation phenomena. This paper was focused on the investigations of the conditions for which the equipment is protected by an SPD taking into account the influences of the protective distance and type of load. The protective effects of SPD with voltage-limiting component were analyzed as functions of types of load and protective distance between the SPD and load. As a result, in the cases of long protective distances, capacitive loads and loads with high resistance, the voltage at the load terminal was significantly higher than the residual voltage of SPD. It was found that the proper installation of SPDs should be carried out by taking into account the protective distance and type of load to achieve reliable protection of electronic equipments against surges.

해상 풍력발전단지에서 뇌격 시 서지어레스터 열화로 인한 연계 고장 분석 (A Study on the Consecutive Failure Due to Deterioration in Surge Arresters of the Offshore Wind Farm)

  • 김진혁;김규호;이재균;우정욱
    • 전기학회논문지
    • /
    • 제67권10호
    • /
    • pp.1265-1270
    • /
    • 2018
  • One of the ways to improve the stability of power facilities used in power systems is to use power surge arresters and to protect against transient overvoltages and surges in normal operation. Also it is important to reduce the impact of lightning strikes because lightning can create overvoltage in the grid of the wind turbine and affect power quality. So This paper analyzes the effects of overvoltage and adjacent turbines due to single strike and multi strike to ground impedance changes when the surge arrester is deteriorated in a wind power farm.

배전용 변압기 고압측으로의 뇌서지 전파 (Propagation of Lightning Surges toward primary Side of Distribution Transformer)

  • 이복희;이수봉;김병근;이승칠;이동문;정동철
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.269-272
    • /
    • 2003
  • The importance of the improving quality of electric power is being strongly raised, owing to an increasing use of sensitive and small-sized electronic devices and system. The transient overvoltage on low-voltage AC power distribution system are induced by direct or indirect lightning return strokes, and those can cause damage and/or malfunction of the utility system for borne automation, office automation and factory automation as well as medical equipments. The behavior of lightning surge transferred to the primary side from the primary side in distribution transformers were experimentally investigated the protection effect of low voltage SPD installed at the secondary side of distribution transformers was analyzed.

  • PDF