• Title/Summary/Keyword: Lightning Overvoltage

Search Result 93, Processing Time 0.032 seconds

Suitability Evaluation on Joint Operation of Neutral Wire and Overhead Grounding Wire through Lightning Surge Analysis in Combined Distribution System (혼합배전계통에서 뇌과전압 해석을 통한 중성선과 가공지선 혼용 운전의 타당성 평가)

  • Jeong, Seok-San;Lee, Jong-Beom;Kim, Yong-Kap;Song, Il-Keun;Kim, Byoung-Suk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2135-2142
    • /
    • 2010
  • This paper studies the validity about a joint operation of neutral wire and overhead grounding wire in combined distribution systems. The overhead grounding wire and neutral wire are currently installed separately and grounded by common. However there is no any ineffectiveness or electrical problem in case of the proposed system, such system can be operated at real distribution system. Therefore this paper describes the suitability of a joint operation through lightning surge analysis on combined distribution systems. Lightning surge analysis is carried out by EMTP/ATPDraw to obtain the overvoltage of overhead line and underground cable in various conditions such as locations and current types of lightning stroke. Overvoltage gained by the analysis show that the insulation strength of the joint operation case is not stable compare with the current operation case.

Analysis and Countermeasure of Lighting Fault on 765kV Transmission Lines (765kV 송전선로 낙뢰고장 분석 및 대책)

  • Min, Byeong-Wook;Lee, Sung-Hak;Kim, Ho-Ki;Kang, Yeon-Woog;Bang, Hang-Kwon;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.337-338
    • /
    • 2008
  • KEPCO has built, for the first time in the world, 765㎸ double circuit transmission lines which use vertically arranged phase conductor, while 765㎸ transmission lines in other countries are single circuit lines and use horizontally arranged phase conductor. System operating voltage, switching overvoltage, and lightning overvoltage were considered in determining the air gap. Recently, however, lightning outage rate of some 765㎸ transmission lines in KOREA shows that it is more than what is expected. Lightning fault of 765㎸ transmission lines is mostly single phase grounding fault which can be reclosed. But it still needs to be carefully managed, for the bulk system like 765㎸ transmission lines have huge effects on whole power system. This paper introduces analysis and countermeasure of KEPCO's 765㎸ transmission line lightning outage.

  • PDF

A Study on SVL Transient Characteristics by Switching Overvoltage at Single Point Bonding Section in Underground Transmission Cables (개폐과전압 발생시 지중송전선로 편단접지 구간에서 SVL에 미치는 과도특성에 관한 연구)

  • Jung, Chae-Kyun;Kang, Ji-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.764-769
    • /
    • 2014
  • This paper describes sheath voltage limiter(SVL) transient characteristics by switching overvoltage considering single point bonding in underground transmission cables. The crossbonding system is generally used for grounding methods of underground transmission system. However, the single point bonding system is used in selective area which is difficult to consist of crossbonding major section. The sheath voltage limiters are connected between joints in the single point bonding. Specially, the high overvoltage might be generated in that section as well as the aging of sheath voltage limiter might be progressed by various electrical stress including lightning overvoltage, switching overvoltage and power frequency overvoltage. Therefore, in this paper, the switching overvoltage characteristics in underground cables are firstly analysed using EMTP simulation. Then, the switching overvoltage of sheath voltage limiter is also studied in single point bonding. Finally, the reduction method of sheath voltage limiter switching overvoltage is proposed by various simulation studies including circuit breaker operating order.

Surge Protection of Underground Distribution Systems by Surge Arrester Application (피뢰기에 의한 지중배전계통의 써어지 보호)

  • Lee, Yong-Han;Jung, Dong-Hak;Jeong, Dong-Won;Lim, Young-Hyuck
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.176-179
    • /
    • 1992
  • This paper presents results of typical sutdy on lightning overvoltages of underground distribution systems and discusses effective insulation coordination schemes. Typical lightning current and system parameters are used to analyze lightning overvoltage distribution on underground distribution systems by EMTP (Electro-Magnetic Transients Program).

  • PDF

A Study on the Lightning Overvoltage Analysis and Lightning Surge Protection Methods in 22.9kV Underground Distribution Systems (22.9kV 지중계통의 뇌과전압 해석 및 뇌서지 보호방안에 관한 연구)

  • 김상국;정채균;이종범;박왈서
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.8
    • /
    • pp.454-460
    • /
    • 2004
  • The effects of surge arresters for protection of transmission systems against direct lightning strokes have already been reviewed using Electromagnetic Transients Program(EMTP). Distribution lines are spanned in much larger area than transmission lines, and therefore, are more susceptible to lightning strokes. We have modelled the 22.9kV underground distribution cable systems that have arresters and grounding wires. And this paper analyzes the overvoltages on underground distribution cable systems when direct lightning strokes strike on the overhead grounding wire using EMTP. Then we investigated that (1) the effects of lightning stroke according to underground distribution cable length (2) voltages at the riser pole and at the cable terminal according to installation of arrester. This study will provide insulation coordination methods for reasonable systems design in 22.9kV underground distribution cable systems.

Analysis of degradation of distribution lightning arresters as degradation degree (열화정도에 따른 배전용 피뢰기의 열화특성 분석)

  • 장동욱;박동배;박영국;이용희;강성화;임기조
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.140-143
    • /
    • 2000
  • The primary function of ZnO lightning arrester is to protect transmission and distribution equipment from overvoltages and to absorb electrical energy resulting from lightning or switching surges and form temporary overvoltage. However, ZnO lightning arrester are known to exhibit an increases in resistive current with time, the rate of increase being exacerbated with increasing applied voltage and ambient temperature. So, it is important to the leakage current measurement of ZnO lightning arrester. In addition, since the resistive leakage current caused by deterioration of ZnO lightning arrester mainly caused an increase of the third harmonic component, thereby it is possible the arrester degradation diagnosis by measuring the third harmonic component in the total leakage current. The leakage current and third harmonic component are measured and used to investigate the degradation diagnosis of ZnO element of arrester. Also the SEM photography is used to investigate the change of crystal structure of ZnO element with degradation.

  • PDF

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500kV Substations

  • Ju Hyung-Jun;Lee Heung-Ho
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.366-370
    • /
    • 2005
  • To meet increasing power demand, 500 kV power systems are under consideration in the regions of some Middle Asian countries. As the power system voltage becomes higher, the cost for the power system insulation increases significantly. 500 kV transmission systems will become the basis of a region's power system and they require much higher system reliability. Consequently, by the methods of limiting overvoltages effectively, a reasonable insulation design and coordination must be accomplished. In particular, the Substations must be constructed to be of outdoor type. In order to determine the various factors for the insulation design, the EMTP (Electro-magnetic transient program) is used for the magnification of transient phenomena of the 500 kV systems in the planned network. In this paper, we will explain the calculation results of lightning overvoltages by the EMTP for lightning protection design for the 500 kV substations. To obtain reliable results, the multi-story tower model and EMTP/TACS model are introduced for the simulation of dynamic arc characteristics.

Analysis of Surge behavior on Branch Line in the Underground Distribution Systems (지중배전계통에서의 분기선로의 서지특성 해석)

  • Lee, Jang-Geun;Lee, Jong-Beom;Lee, Jae-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.157-158
    • /
    • 2006
  • This paper describes the overvoltage of branch line in underground distribution systems when the direct lightning surge strikes on conductor of overhead line. Distribution systems are very complex because that includes so many branch lines, transformers, switches and so on. Therefor model systems consist of overhead distribution lines, underground cable include branch lines, lightning source and switches. Those are established by EMTP/ATPDraw. Simulation analyzes surge behavior on branch lines considering various conditions in underground distribution systems. Simulation results shoe overvoltage with location in various cases.

  • PDF

Analysis of Surge Behavior and Protection Method in the Underground Distribution Systems with Branch Lines (분기선로가 포함된 지중배전계통에서 서지특성 해석 및 보호방안에 관한 연구)

  • Lee, Jang-Geun;Lee, Jong-Beom;Lee, Jae-Bong;Kim, Byoung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.148-150
    • /
    • 2006
  • This paper describes the overvoltage at the branch line in underground distribution systems when the direct lightning surge strikes on conductor of overhead line. Distribution systems are very complex because it includes many branch lines, transformers, switches and so on. Therefore model system consists of overhead distribution lines, underground cable include branch lines, lightning source and switches. Analysis are performed using EMTP to understand and evaluate the surge behavior on branch lines considering various conditions in underground distribution systems. Simulation results show overvoltage with location in various cases. It is evaluated that result will be used to establish protection methods in actual underground distribution systems.

  • PDF

Transient Analysis and Evaluation of 345kV Combined Transmission Line Connected with GIL (345kV급 GIL이 연계된 혼합송전선로의 뇌서지해석 및 평가)

  • Jang, Hwa-Youn;Lee, Jong-Beom;Kim, Yong-Kap;Jung, Chae-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.11
    • /
    • pp.1949-1955
    • /
    • 2010
  • This paper describes the characteristic and effectiveness of combined GIL transmission line through lightning surge analysis. In addition the XLPE cable is analyzed in the same condition to compare with GIL. Lighting surge analysis is carried out by EMTP/ATP-Draw to obtain overvoltage of GIL and XLPE cable at service-point and load-out area of underground line. Propagation velocity is calculated in combined transmission lines with GIL and XLPE cable. The overvoltage is also analyzed on GIL and XLPE cable with or without arrester operation. The Analysis results show that overvoltage of GIL is occurred higher than XLPE cable at the same condition. Therefore it is evaluated that the application of GIL at the field should be considered cautiously when more detailed transient analysis, another electrical testes and economic evaluations are implemented.