• Title/Summary/Keyword: Lighting Energy

Search Result 672, Processing Time 0.026 seconds

Information System of Smart u-LED Lighting Energy based on Zigbee Mesh Network (지그비 메쉬 망 기반 스마트 u-LED 전력제어 시스템)

  • Kim, Sam-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.77-83
    • /
    • 2013
  • Nowadays, the limitation of Lighting control and management skills is the excessive cost of equipments, the operational difficulties and wasting energy. To solve this problem is in need of communication and management S/W that is worked out complexly well as a information system of smart lighting energy, which is loaded wireless network facility. This paper made a study od the energy saving technology through energy monitoring and we developed LEIS(Lighting Energy Information Sysem) to converge this one. LEIS is monitoring and control lighting energy data that is collelcted from sensors by Zigbee mesh network and shows lighting use information by visualization to users. It is consists of lighting energy information data base based on LEM(Lighting Energy Metering) information and LEIS Web application, provide function scenario to manage energy optimization through LEIS.

Decision of Lighting Power Density for Office Building Lighting (사무용 빌딩의 조명전력 허용기준 연구)

  • Lee, Sang-Jin;Lee, Min-Wook;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.22-28
    • /
    • 2012
  • To identify energy savings when comparing lighting designs or evaluating installed lighting, it is necessary to analyze the consumption of lighting power with respect to the electricity consumed and the lighting area. In Korea, however, these factors have not been considered in lighting design. In this paper, the lighting power-related standards on indoor lighting in foreign countries have been analyzed. It is determine appropriate lighting power consumption for indoor by calculating the energy consumption has been estimated in a lighting design adopted domestic luminaire used.

A Lighting direction and Luminous Flux Control for Energy-efficiency under Illuminance Requirements in Indoor Lighting Systems (사용자 요구 조도 보장 에너지 효율적 실내 조명 시스템 조명 방향 및 광속 제어 기법)

  • Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.5
    • /
    • pp.19-25
    • /
    • 2015
  • The management of energy resources for efficient utilization of the energy resources while reducing the system costs is a critical technical issue. Among many kinds of the energy resource management, the energy reduction for indoor lighting systems is getting much concern as a large portion of energy consumption has been made for indoor lightings. In this paper, an energy-efficient lighting control scheme for indoor lighting systems in order to reduce the energy consumption by controlling the luminous flux and the lighting direction under the illuminance constraints is proposed. With the use of the user location information for the luminaire which is closely located to the user, the proposed scheme firstly sets the light direction of the luminaire to be aligned to the user location. Then, an optimization problem to find the luminous flux of each luminaire is formulated in order to minimize the luminous flux sum of the luminaires with the constraints for the dynamic ragne of the luminous flux, and the light flux for each luminaire is determined by the solution of the problem. Simulation results show that the proposed scheme outperforms the luminaire control scheme with only the luminous flux control in the evaluation of satisfaction of the required illuminance level.

A Smart Lighting Management System with Satisfaction of User's Lighting Requirements (사용자 요구조도 만족 스마트 조명 관리시스템)

  • Shin, Dae-Sik;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.1-8
    • /
    • 2013
  • In this paper, we proposed a smart lighting management system controls the lighting efficiently to reduce energy consumption while satisfying user's lighting requirements. The proposed system considers the available daylight intensity and indoor light source to satisfy the lighting requirements of each user according to the work environment. In addition, for user convenience, we have developed different user interfaces for lighting control including local interface, and remote interface through internet or Bluetooth for personal computer as well as smart phones. The proposed system satisfies the lighting requirements of each user according to the corresponding work environment. The proposed smart lighting management system utilizes the lighting energy efficiently, and can be considered a significant contribution towards future green buildings.

The Performance of generated Heating Energy from Interior Lighting Fixtures (실내조명의 발열량 예측에 관한 실험 연구)

  • Choi, Jong-seon;Lim, Hong-Soo;Kim, Kyung-Ah;Lee, Keum-hwan;Koo, Jae-Oh;Kim, Gon
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.27-32
    • /
    • 2010
  • Approximately 20 percentage of energy consumptions in buildings is consumed as lighting energy. Thus, most of the corporations of lighting fixture have launched low energy products. However, many researchers focused on the only luminous efficacy for energy conservation and used the evaluating tool of study. This can not gauge the precise cooling load related on generated heat of artificial lighting. In order to assess an effect of the temperature variation of lighting resources, the main purpose of this study is to predict the generated heating energy from lighting by measuring the thermal variation in scale model to reduce external noise. Also this paper used MX100 data logger to record at an interval of 1 minute for 60 minutes for the temperature of interior lightings such as incandescent lamp, fluorescent light, halogen lamp and LED lamp. As a result, LED lamp generated the lowest heat. On the other hand, incandescent lamp did the highest.

A Study on Lighting Energy Prediction by Using Daylight during Daytime (자연채광 이용에 따른 조명에너지 예측방법에 관한 연구)

  • Chung, Yu-Gun;Kim, Jeong-Tai
    • Solar Energy
    • /
    • v.11 no.2
    • /
    • pp.9-19
    • /
    • 1991
  • Lighting is one of the largest energy consumption in commercial building. For saving such lighting energy, integrated lighting system with daylight and artificial lighting has been suggested. In such system, perimeter zone can be illuminated by daylighting and the deep area of room by artificial lighting. So, the study aimed to develope of lighting energy prediction nomograph by turnning-off depth and lighting control systems during daytime. For the purpose, energy nomo-graph has been developed to apply to side-lit office building and the use and limitation of the nomograph has been discussed.

  • PDF

Daylighting Performance of Topside Lighting Systems for Different Orientations (방위에 따른 정측창 시스템의 채광성능 평가)

  • Kong, Hyo-Joo;Lee, Jin-Seoung;Ahn, Hyun-Tae;Kim, Jeong-Tai
    • Journal of the Korean Solar Energy Society
    • /
    • v.29 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • Daylighting is core of sustainable design in most buildings. Well-designed daylighting systems can significantly reduce or even eliminate the electric lighting loads during the day time, including air conditioning energy loads. Among window systems. the topside lights systems including monitor lighting, sawtooth lighting, sunscoop and, lightscoop is one of the most popular apparatus to improve the lighting quantity. Also they are important both in terms of energy savings and visual quality. The objective of this study is to analyse daylighting performance of topside lighting system for different orientations. Four types of topside lighting system were tested and comparpd: monitor lighting, sawtooth lighting, lightscoop and sunscoop. Totally 25 measuring points of illuminance on the horizontal plane were monitored from 09:00 to 17:00 on October 6, 2008. Agilent data logger and photometric sensors Li-cor were used. Comparisons with a light factor is discussed. The results found in this study would mean that there were no significant differences in light factor between three cases.

A Reconfigurable Lighting Engine for Mobile GPU Shaders

  • Ahn, Jonghun;Choi, Seongrim;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.145-149
    • /
    • 2015
  • A reconfigurable lighting engine for widely used lighting models is proposed for low-power GPU shaders. Conventionally, lighting operations that involve many complex arithmetic operations were calculated by the shader programs on the GPU, which led to a significant energy overhead. In this letter, we propose a lighting engine to improve the energy-efficiency by supporting the widely used advanced lighting models in hardware. It supports the Blinn-Phong, Oren-Nayar, and Cook-Torrance models, by exploiting the logarithmic arithmetic and optimizing the trigonometric function evaluations for the energy-efficiency. Experimental results demonstrate 12.7%, 42.5%, and 35.5% reductions in terms of power-delay product from the shader program implementations for each lighting model. Moreover, our work shows 10.1% higher energy-efficiency for the Blinn-Phong model compared to the prior art.

A Study on the User and Location Awareness Technology Applied Dimming Lighting Control System to Save Energy (에너지 저감을 위한 사용자 및 위치인식 기술 적용 디밍 조명제어 시스템 연구)

  • Choi, Kihyun;Kim, Yongseong;Lee, Henagwoo;Seo, Janghoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.1
    • /
    • pp.14-23
    • /
    • 2015
  • Although research and technology developments have recently increased to save lighting energy within buildings, such research and technology development are judged to be unsuitable for energy savings since they are limited in the sense that the application of the technology is fragmented. This study proposes a user and location awareness technology applied to dimming lighting control system and verified the effectiveness of energy savings by building a test bed. The results were as follows : 1) This study suggested a user and location awareness technology applied to dimming lighting control system. 2) The system shows 96.6% and 82.8% energy saving rates, respectively, on the basis of one user, compared to an on/off lighting control and the user and location awareness technology applied to on/off lighting control system. 3) The energy consumption of the user and location awareness technology applied to on/off lighting control system and the user and location awareness technology applied to dimming lighting control system increased to 96.6%, 88.3%, and 59.6% and 82.8%, 85.0%, 51.5%, respectively, on the basis of one, two, and three users, compared to the on/off lighting control system. This study confirmed the energy saving performance of the user and location awareness technology applied to the dimming lighting control system through performance evaluation. In this regard, further study needs to be undertaken to evaluate the performance at night time.

Electric Lighting Energy Saving Through the Use of A Fresnel Lens Based Fiber-optic Solar Lighting System: Simulation and Measurements (광화이버 및 Fresnel lens 적용 집광식 자연채광 시스템의 이용을 통한 조명에너지의 절감: 시뮬레이션 및 실측 비교)

  • Jeong, Haejun;Kim, Wonsik;Kim, Yeongmin;Han, Hyun Joo;Chun, Wongee
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2017
  • This paper deals with the effectiveness of a fiber optic solar lighting system that uses a Fresnel lens mounted on a two-axis solar tracker. A series of comparative analyses were made concerning its performance as compared to fluorescent lighting by using a simulation model based on ECOTECT and RADIANCE as well as referring to actual data. ECOTECT was used to model the test room (space) while RADIANCE was used for its indoor lighting conditions (environment). It was found that the average indoor light levels of fluorescent lighting fully satisfy the KS standard (KS A 3011, general office, class [G]: 300-400-600 lux) whereas those of the solar lighting with light diffusers depends on the occlusion factor of roller shades installed on the south window.