• Title/Summary/Keyword: Light-weight material

Search Result 586, Processing Time 0.029 seconds

A Study on Steel Properties for Floating Photovoltaic System Structure (수상태양광 구조물의 강재특성에 관한 연구)

  • Choi, Young-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5400-5405
    • /
    • 2014
  • For the development of a floating photovoltaic system, materials with light weight and high tensile strength must be applied to reduce the burden on buoyancy, and material characteristics with high resistance to corrosion in water environment is required. Accordingly, a new high strength steel material with improved strength, durability, manufacturability, and weldability that are appropriate for floating photovoltaic system structures is needed. This paper reports the results of a mechanical load test and steel corrosion test on general steel (SS400) and high strength steel (POSH 690) for the selection of an appropriate steel material for a floating photovoltaic system. The results of a test on new high strength steel revealed excellent mechanical performance compared to general steel. The new steel material was manufactured for use in an actual site, and the weight was reduced by approximately 30~40% compared to existing general steel.

Effects of Light Intensity and Electrical Conductivity Level on Photosynthesis, Growth and Functional Material Contents of Lactuca indica L. 'Sunhyang' in Hydroponics (수경재배에서 광도와 양액 농도가 베이비 산채 왕고들빼기 '선향' 광합성과 생육 및 기능성 물질 함량에 미치는 영향)

  • Kim, Jae Kyung;Jang, Dong Cheol;Kang, Ho Min;Nam, Ki Jung;Lee, Mun Haeng;Na, Jong Kuk;Choi, Ki Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • This study was conducted to examine the changes of photosynthesis, growth, chlorophyll contents and functional material contents in light intensity and EC concentration of wild baby leaf vegetable, Indian lettuce (Lactuca indica L. cv. 'Sunhyang') in DFT hydroponics. The cultivation environment was 25±1℃ of temperature and 60±5% of relative humidity in growth system. At 14 days after sowing, combination effect of light intensity (Photosynthetic Photon Flux Density (PPFD 100, 250, 500 µmol·m-2·s-1) and EC level (EC 0.8, 1.4, 2.0 dS·m-1) of nutrient solution was determined at the baby leaf stage. The photosynthesis rate, stomatal conductance, transpiration rate and water use efficiency of Indian lettuce increased as the light intensity increased. The photosynthesis rate and water use efficiency were highest in PPFD 500-EC 1.4 and PPFD 500-EC 2.0 treatment. The chlorophyll content decreased as the light intensity increased, but chlorophyll a/b ratio increased. Leaf water content and specific leaf area decreased as light intensity increased and a negative correlation (p < 0.001) was recognized. Plant height was the longest in PPFD 100-EC 0.8 and leaf number, fresh weight and dry weight were the highest in PPFD 500-EC 2.0. Anthocyanin and total phenolic compounds were the highest in PPFD 500-EC 1.4 and 2.0 treatment, and antioxidant scavenging ability (DPPH) was high in PPFD 250 and 500 treatments. Considering the growth and functional material contents, the proper light intensity and EC level for hydroponic cultivation of Indian lettuce is PPFD 500-EC 2.0, and PPFD 100 and 250, which are low light conditions, EC 0.8 is suitable for growth.

Investigation of the level difference of floor impact noises through the shape variation of EVA resilient materials with composite floor structure (EVA 완충재의 형상변환을 통한 복합구조의 바닥충격음 변이 조사)

  • Jakin Lee;Seung-Min Lee;Chan-Hoon Haan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.60-71
    • /
    • 2024
  • The present study aims to investigate the level difference of floor impact noises of composite floor structure using EVA resilient materials. In order to this, four different types of resilient materials were designed combining PET, PP sheet and EVA mount including Flat type, Deck type, Cavity type and Mount type. Totally 9 different samples were made for acoustic measurements which were carried out twice with bang-machine and impact ball as the heavy-weight floor impact noise sources. All the floor impact noise measurements were undertaken at the authentication institution. As a result, concerning Flat and Cavity types, it was found that 2 dB ~ 5 dB of heavy-weight floor impact noise was reduced supplementally when PET was added, while floor impact noise larger than 50 dB was acquired when single resilient material was used. Especially, most high performance was obtained for Mount type with 1st grade of light-weight floor impact noise and 2nd grade of heavy-weight floor impact noise. This is because of material property with low dense PET sound absorption materials which fill all around EVA mounts. Also, it was considered that this results are due to the sound impact absorption by the both EVA mounts and the air cavity between EVA mount and PP sheet. Also, it was found that at least 36 EVA mounts per 1m2 area of resilient panel make more noise reduction of heavy-weight floor impact noises.

Acute Toxicity Study on Oryeong-san in Mice (오령산 열수추출물의 단회투여 급성독성 연구)

  • Park, Hwayong;Hwang, Youn-Hwan;Ha, Jeong-Ho;Jung, Kiyoun;Ma, Jin Yeul
    • Herbal Formula Science
    • /
    • v.21 no.1
    • /
    • pp.111-118
    • /
    • 2013
  • Objectives : Traditional medicine Oryeong-san (ORS) has been prescribed for a long time to treat light fever, thirst, dysuria, and accompanying edema. However, the acute toxicity and safety were not reported. In this study, we evaluated the potent acute toxicity and safety of ORS. Methods : ICR mice were used to evaluate acute toxicity and safety by oral administration of 0, 500, 1,000, 2,000mg/kg of ORS. Mortality, body weight, and clinical symptoms were observed, and organ weight and blood biochemical parameters were analyzed after necropsy. Results : We found no mortality and no toxic or abnormal clinical symptoms by administration of ORS. Comparing with control group, no significant alterations in organ weight and blood biochemical parameters were observed. Conclusions : ORS recognized as safe and non-toxic medicinal material, and median lethal dose considered to be over 2,000 mg/kg in both male and female ICR mice.

Numerical study of the Crosswind Safety on Korean Tilting Train Express (수치 해석 방법을 애용한 한국형 틸팅 차량의 측풍 안전성 고찰)

  • Yun S. H.;Ku Y. C.;Kim T. Y.;Ko T. H.;Lee D. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.109-113
    • /
    • 2005
  • Recently, the weight of train is decreased by using the light material for improvement in energy efficiency. And the length of whole train is more increased for mass transportation of passengers and cargo. However, decrease of the weight and increase of the length of train can cause the train to be overturned or derailed by strong crosswind. In case of Korean Tilting Train eXpress (TTX), the situation can be more severe. TTX will be developed for a quasi-high speed train at 200km/h speed rate and operated on the existing tracks. Moreover, the weight of TTX will be much less than that of conventional train. It is supposed that TTX will be very sensitive to crosswind. In this paper, numerical analysis is used to investigate aerodynamic characteristics around TTX and obtain the induced lateral force by crosswind. After calculating derailment coefficient and overturning coefficient using numerical results, the crosswind safety of TTX is judged. This paper will be good data for judging crosswind safety of TTX.

  • PDF

Spawning and Hatching of Octopus minor (낙지 (Octopus minor)의 산란과 부화)

  • Kim, Dong-Soo;Kim, Jae-Man
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.243-247
    • /
    • 2007
  • We investigated the reproductive behavior of Octopus minor, order Octopoda, class Cephalopoda under laboratory conditions. Each mature female octopus was kept in an aquarium with a plastic tube for shelter, and one mature male was introduced for the purpose of copulation. Before spawning, the female coated the roof of the shelter with a light-green material, upon which it then fixed its eggs one by one. This spawning behavior lasted 1 to 3 days. Fertilized females spawned 54 eggs on average, ranging from 21 to 112 eggs at 72 to 98 days after copulation. The attached eggs were 18.1-19.0 mm in length, 5.0-6.1 mm in width, and 0.30-0.38 g in weight. The mother octopods did not feed; they attended to the eggs by using their arms to rub the egg surfaces and used their funnel to blow sediments off of the eggs. At water temperatures of $20.9-21.5^{\circ}C$, the fertilized eggs hatched within 73 to 90 days after being spawned. The effective cumulative water temperature was $1,569-1,892^{\circ}C$. At the end of incubation, the body weight of the mother octopods was reduced to approximately 56% of the initial weight, and most mother octopods died soon after the young hatched.

Mix Design and Characteristics of Compressive Strengths for Foam Concrete Associated with the Application of Bottom Ash (Bottom Ash를 사용한 기포콘크리트의 배합 설계 및 압축강도 특성)

  • Kim, Sang-Chel;Ahn, Sang-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.283-290
    • /
    • 2009
  • Differently from fly ash, the bottom ash produced from thermoelectric power plant has been treated as an industrial waste matter, and almost reclaimed a tract from the sea. If this waste material is applicable to foam concrete as an aggregate owing to its light-weight, however, it may be worthy of environmental preservation by recycling of waste material as well as reducing self-weight of high-rising structure and horizontal forces and deformations of retaining wall subject to soil pressure. This study has an objective of evaluating the effects of application of bottom ash on the mechanical properties of foam concrete. Thus, the ratio of bottom ash to cement was selected as a variable for experiment and the effect was measured in terms of unit weight of concrete, air content, water-cement ratio and compressive strength. It can be observed from experiments that the application ratios have different effects on the material parameters considered in this experiment, thus major relationships between application ratio and each material parameter were finally introduced. The result of this study can be applied to decide a mix design proportion of foam concrete while bottom ash is used as an aggregate of the concrete.

Structural Analysis of Composite Partition Panel according to Weaving Methods (직조 방법에 따른 복합재 파티션 패널의 구조 해석)

  • Kang, Ji Heon;Kim, Kun Woo;Jang, Jin Seok;Lee, Jae Jin;Mun, Ji Hun;Kang, Da Kyung;Ahn, Min Su;Lee, Jae Wook
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.140-146
    • /
    • 2020
  • The purpose of this paper is to examine the possibility of weight reduction by changing the partition panel of vehicle from an existing aluminum material to carbon fiber reinforced plastics. Three weaving methods (plain, twill and satin) were used in the manufacture of composite materials, and they were produced and tested to derive their material properties. The analysis model of composite partition panel for torsional conditions was developed and the structural stability and system stiffness were evaluated according to Tsai-Hill failure criteria. With design variables for fiber orientation angles and stacking sequence, evolutional optimal algorithm was performed and as the results, the optimal composite partition panel was designed. In addition, the structural analysis results for strength and specific stiffness were compared with aluminum partition panels and composite partition panels to verify the possibility of weight reduction.

Light Weight Design of the Commercial Truck Armature Core using the Sequential Response Surface Method (순차적 반응표면법을 이용한 상용 트럭 아마추어 코어 경량화 설계)

  • H. T. Lee;H. G. Kim;S. J. Park;Y. G. Jung;S. M. Hong
    • Transactions of Materials Processing
    • /
    • v.32 no.1
    • /
    • pp.12-19
    • /
    • 2023
  • The armature core is a part responsible for the skeleton of the steering wheel. Currently, in the case of commercial trucks, the main parts of the parts are manufactured separately and then the product is produced through welding. In the case of this production method, quality and cost problems of the welded parts occur, and an integrated armature core made of magnesium alloy is used in passenger vehicles. However, in the case of commercial trucks, there is no application case and research is insufficient. Therefore, this study aims to develop an all-in-one armature core that simultaneously applies a magnesium alloy material and a die casting method to reduce the weight and improve the quality of the existing steel armature core. The product was modeled based on the shape of a commercial product, and finite element analysis (FEA) was performed through Ls-dyna, a general-purpose analysis program. Through digital image correlation (DIC) and uniaxial tensile test, the accurate physical properties of the material were obtained and applied to the analysis. A total of four types of compression were applied by changing the angle and ground contact area of the product according to the actual reliability test conditions. analysis was carried out. As a result of FEA, it was confirmed that damage occurred in the spoke area, and spoke thickness (tspoke), base thickness (tbase), and rim and spoke connection (R) were designated as design variables, and the total weight and maximum equivalent stress occurring in the armature core We specify an objective function that simultaneously minimizes . A prediction function was derived using the sequential response surface method to identify design variables that minimized the objective function, and it was confirmed that it was improved by 22%.

A Study on Wear Property of Oil Hydraulic Piston Pump Material (유압 피스톤 펌프 소재의 마모 특성에 관한 연구)

  • Kim, Nam-Soek;Kim, Hyun-Soo;Seong, Ki-Yong;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.30-34
    • /
    • 2009
  • Oil hydraulic piston pumps are being extensively used in the world, because of simple design, light weight and effective cost etc. An oil hydraulic pump is likely to have serious problems of high leakage, friction and low energy efficiency according to large time use. In the oil hydraulic piston pumps the clearance between the valve block and piston plays an important role for volumetric and overall efficiency. In this paper, the wear property of the SACM645 material used the hydraulic piston pump has been work out by experimentation with variable heat treatment. To investigate the effect according to the piston surface condition, seven different types specimen were prepared. From the wear test results, induction hardening and nitration were definitely superior to the others. On the whole, nitration was estimated for high strength material to wear resistance.