• Title/Summary/Keyword: Light-emitting diode light quality

Search Result 107, Processing Time 0.028 seconds

The effect of artificial lights on the growth and quality of hydroponic cultivated barley (Hordeum vulgare L.) sprouts (인공조명이 수경재배 새싹보리(Hordeum vulgare L.)의 생장과 품질에 미치는 영향)

  • Kim, Ju-Sung
    • Journal of Plant Biotechnology
    • /
    • v.48 no.1
    • /
    • pp.62-70
    • /
    • 2021
  • We analyzed the growth and quality characteristics of barley sprouts grown under artificial light sources consisting of a fluorescent lamp or light-emitting diode (LED) in an aquaculture system (grown with water only, without nutrients). At the end of the observation period, the shoots grown under the fluorescent lamp treatment were the longest, followed by the LED treatment and natural light-treatment. It was also observed that growth was faster for sprouts subjected to a non-sterilizing treatment than those subjected to a 70% ethanol treatment. As the seed sowing rate for planting trays increased, the yield of harvested barley sprouts increased; among light treatments, the natural light treatment resulted in the lowest yield, while the fluorescent light treatment resulted in the highest. The total phenol and total flavonoid contents of extracts of the barley sprouts were highest for the natural light treatment, but TEAC and FRAP were both highest for the fluorescent lamp treatment. The essential amino acid content ranged from 41.64 to 45.93 mg/g and was relatively higher for the natural light treatment than the other two treatments, while the content of non-essential amino acids was highest for the LED treatment. The total amino acid content was highest for the LED treatment at 97.47 ± 6.30 mg/g, for which the content of non-essential amino acids (53.17%) was higher than that of essential amino acids (46.83%).

The effects of video quality by LED background image in the broadcasting lighting (방송조명에서 LED 배경화면이 영상품질에 미치는 영향 분석)

  • Kim, Yong-Kyu;Kim, Kyung-Ho;Lee, Seon-Hee;Choi, Seong-Jhin
    • Journal of Broadcast Engineering
    • /
    • v.15 no.1
    • /
    • pp.76-88
    • /
    • 2010
  • Recently, LED background image devices are used for the production of broadcasting programs. But the effective advantages of LED background image devices are not realized for good HD video quality because the correlations between lighting sources and LED background image devices are not analyzed yet. In this paper, we analyze the color change and light intensity that lighting sources and the light intensity ratio of LED background images influence on a subject, making use of equipments used in real broadcasting, and examine the correlations between HD video quality and the light intensity ratio of LED background images. As a result in this experiment, the video is most expressed having an 20[IRE] effect on a subject when the light intensity of LED background image is 6%. When the LED background image is light, the light and darkness of video is distorted and when the LED background image is dark, the colors of image are distorted.

Effects of Light Quality and Intensity on the Carbon Dioxide Exchange Rate, Growth, and Morphogenesis of Grafted Pepper Transplants during Healing and Acclimatization

  • Jang, Yoonah;Mun, Boheum;Seo, Taecheol;Lee, Jungu;Oh, Sangseok;Chun, Changhoo
    • Horticultural Science & Technology
    • /
    • v.31 no.1
    • /
    • pp.14-23
    • /
    • 2013
  • This study evaluated the influence of light quality and intensity during healing and acclimatization on the $CO_2$ exchange rate, growth, and morphogenesis of grafted pepper (Capsicum annuum L.) transplants, using a system for the continuous measurement of the $CO_2$ exchange rate. C. annuum L. 'Nokkwang' and 'Tantan' were used as scions and rootstocks, respectively. Before grafting, the transplants were grown for four weeks in a growth chamber with artificial light, where the temperature was set at $25/18^{\circ}C$ (light/dark period) and the light period was 14 hours $d^{-1}$. The grafted pepper transplants were then healed and acclimatized under different light quality conditions using fluorescent lamps (control) and red, blue, and red + blue light-emitting diodes (LEDs). All the transplants were irradiated for 12 hours per day, for six days, at a photosynthetic photon flux (PPF) of 50, 100, or 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. The higher PPF levels increased the $CO_2$ exchange rate during the healing and acclimatization. A smaller increase in the $CO_2$ exchange rates was observed in the transplants under red LEDs. At a PPF of 180 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, the $CO_2$ exchange rate of the transplants irradiated with red LEDs was lowest and it was 37% lower than those irradiated with fluorescent lamps. The $CO_2$ exchange rates of transplants irradiated with blue LEDs was the highest and 20% higher than those irradiated under fluorescent lamps. The graft take was not affected by the light quality. The grafted pepper transplants irradiated with red LEDs had a lower SPAD value, leaf dry weight, and dry matter content. The transplants irradiated with blue LEDs had longer shoot length and heavier stem fresh weight than those irradiated with the other treatments. Leaves irradiated with the red LED had the smallest leaf area and showed leaf epinasty. In addition, the palisade and spongy cells of the pepper leaves were dysplastic and exhibited hyperplasia. Grafted pepper transplants treated with red + blue LEDs showed similar growth and morphology to those transplants irradiated with fluorescent lamps. These results suggest that high-quality grafted pepper transplants can be obtained by healing and acclimatization under a combination of blue and red lights at a high PPF level.

An Energy-efficient LED Lighting Control Scheme with Provision of User Illumination Requirement (사용자 요구조도 보장 에너지 효율적 LED 조명 제어 기법)

  • Kim, Yong-Ho;Lee, Kwon-Hyung;Chang, Kap-Seok;Choi, Yong-Hoon;Kim, Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1383-1388
    • /
    • 2011
  • Due to many recent activities on enforcement of the intensified environmental regulation such as the policies of curbing the greenhouse gas and the Restriction of Hazardous Substances (RoHS), the usage of Light emitting diode (LED) has been rapidly increased and energy efficient management of LED light system is regarded as an important technology to enhance the energy efficiency. In this paper, we propose an energy-efficient control scheme of LED light, being composed of multiple light sources. The proposed scheme controls the intensity of LED light source to minimize the total intensity while providing the quality of lighting service. The intensity of light is assumed to be proportional to power consumption, thus the objective is to minimize the total power consumption. A linear programming problem is formulated to find the optimal intensity of each light source and procedure to apply the proposed scheme in the real system is suggested. The performance evaluation results elucidate that the proposed scheme achieves over 20% improvement in power consumption of light intensity in comparison with the conventional dimming control scheme.

OLED Lighting System Integrated with Optical Monitoring Circuit (광 검출기가 장착된 OLED 조명 시스템)

  • Shin, Dong-Kyun;Park, Jong-Woon;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.13-17
    • /
    • 2013
  • In lighting system where several large-area organic light-emitting diode (OLED) lighting panels are involved, panel aging may appear differently from each other, resulting in a falling-off in lighting quality. To achieve uniform light output across large-area OLED lighting panels, we have employed an optical feedback circuit. Light output from each OLED panel is monitored by the optical feedback circuit that consists of a photodiode, I-V converter, 10-bit analogdigital converter (ADC), and comparator. A photodiode generates current by detecting OLED light from one side of the glass substrate (i.e., edge emission). Namely, the target luminance from the emission area (bottom emission) of OLED panels is monitored by current generated from the photodiode mounted on a glass edge. To this end, we need to establish a mapping table between the ADC value and the luminance of bottom emission. The reference ADC value corresponds to the target luminance of OLED panels. If the ADC value is lower or higher than the reference one (i.e., when the luminance of OLED panel is lower or higher than its target luminance), a micro controller unit (MCU) adjusts the pulse width modulation (PWM) used for the control of the power supplied to OLED panels in such a way that the ADC value obtained from optical feedback is the same as the reference one. As such, the target luminance of each individual OLED panel is unchanged. With the optical feedback circuit included in the lighting system, we have observed only 2% difference in relative intensity of neighboring OLED panels.

Initial Photometric and Spectroscopic Characteristics of 55-inch CCFL and LED Backlights for LCD-TV Applications

  • Ko, Jae-Hyeon;Ryu, Jin-Sun;Yu, Mi-Yeon;Park, Seung-Mi;Kim, Su-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.3
    • /
    • pp.8-13
    • /
    • 2010
  • For better picture quality in LCD TVs, it is important to reach a steady emitting state within as short a time as possible in the initial stage after the TV is turned on. The initial characteristics of LCD TVs are mainly determined by the properties of the backlight. In the present study, the photometric and spectroscopic properties of a 55-inch Cold Cathode Fluorescent Lamp (CCFL) and Light Emitting Diode (LED) backlights were investigated. The measured properties include time dependence of the spectrum, luminance, and color coordinates. The results show that the change in the spectroscopic properties of the LED backlight is smaller than that of the CCFL backlight. This indicates that the initial picture quality of the LCD TV with the LED backlight is superior to that with the CCFL backlight. The origins of this difference were discussed in relation to the inherent characteristics of the two light sources.

Experiments and analysis of droplet formation influenced by driving waveform (구동파형에 따른 잉크액적 형성 실험 및 해석)

  • Shin, Dong-Youn
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.26-29
    • /
    • 2008
  • In the fields of electronics and displays where inkjet printing has demonstrated its capability to fabricate colorant subpixels of thin film transistor liquid crystal(TFT LCD) color filters and organic light emitting diode (OLED) displays, conducting tracks and TFTs, the production of satellite droplets is one of primary things to eliminate because they generally deteriorate the pattern quality. To understand the production mechanism of satellite droplets in this paper, driving waveforms such as monopolar and bipolar were employed and the influence of the pulse duration time were investigated in both experimental and numerical aspects.

  • PDF

Effect of LED Light on Primordium Formation, Morphological Properties, Ergosterol Content and Antioxidant Activity of Fruit Body in Pleurotus eryngii (LED광원이 큰느타리버섯 자실체의 발생, 생육, 에르고스테롤 함량 및 항산화활성에 미치는 영향)

  • Jang, Myoung-Jun;Lee, Yun-Hae;Kim, Jeong-Han;Ju, Young-Cheol
    • The Korean Journal of Mycology
    • /
    • v.39 no.3
    • /
    • pp.175-179
    • /
    • 2011
  • Light wavelength is the major factor of fruit body development associated with mushroom cultivation, but its wavelength range in Pleurotus eryngii is poorly understood. Using four kinds of light emitting diode (LED) including blue (475 nm), green (525 nm), yellowed (590 nm) and red (660 nm), we investigated to elucidate suitable light wavelength during primordium formation and fruit body development of P. eryngii on bottle cultivation. Primordia formation did not occur in blue light and red light. The morphological properties of fruit body in fluorescent lamp and blue light irradiation were showed thicker and larger pileus than those in other LEDs. However, length of stipe in fluorescent lamp and blue light was shorter than that of other LEDs. The DPPH radical was high in blue light, green light, and yellow light except for red light, and the polyphenol was high in four kinds of LED sources. And ergosterol was the highest in the green light. Thus, the high-quality mushroom production of P. eryngii is possible to green light condition considering productivity and functional materials.

Research Method of Driving Driver to improve Stability and Reliability of AC LED (AC LED의 안정성과 신뢰성 향상을 위한 구동용 DRIVER 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.205-210
    • /
    • 2020
  • Thanks to the shift in awareness of environmentally friendly energy and government initiatives, practical light-emitting diode(LED) lighting fixtures have emerged and are being distributed, resulting in very large energy savings. However, in actual use of LED lighting, it is possible to use it as an individual, but when using a large street light or a whole home lighting, the whole lighting system is realized due to various problems such as efficiency, stability, and reliability. Doing so has several problems. Although AC-LED has been developed recently to solve safety problems such as heat generation phenomenon of the conventional DC-LED, it also has various problems such as quality safety and reliability, which are difficult to use as outdoor lighting using existing AC Power. This happens. Accordingly, the appropriate power for AC-LED should be developed and applied, and the emergence of such LED lighting will play a role as a tool that can overcome the limitations of existing LED lighting and implement sustainable energy saving.

Introduction and Research Trends on Micro LED Technology (마이크로 LED 기술 소개 및 연구 동향)

  • Moojin Kim
    • Advanced Industrial SCIence
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2024
  • Currently, micro LEDs (Light Emitting Diode) are attracting attention in the lighting field along with next-generation displays and have advantages such as high luminance, operating speed, energy efficiency, and long-term driving. It is predicted to bring new innovations in smartphones, televisions, and wearable electronic devices. These micro displays are self-luminous displays that emit light by themselves by being implemented as pixels composed of micrometer-sized LED devices. The main manufacturing processes can be divided into crystal growth, patterning and etching, chip separation and transfer, bonding and wiring, panel assembly and encapsulation, inspection, and quality management. Recently, this technology has developed at a rapid pace, and companies are expanding their investments in these fields. According to recent market research results, the micro LED display market is expected to continue to grow, and the main development direction of development can be summarized as manufacturing process improvement, material innovation, and driving technology development. It is believed that commercialization will accelerate through these studies and lead to innovation in the display industry with high performance and various application possibilities.