• Title/Summary/Keyword: Light-Weight Pavement

Search Result 21, Processing Time 0.027 seconds

Comparative Analysis of Bearing Capacity by Road Pavement Method Using Geocell (Geocell을 활용한 도로포장 공법별 지지력 비교 분석)

  • Suhyung Lee;Hyunwoo Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.12
    • /
    • pp.19-29
    • /
    • 2023
  • The main problem with roads is that cracks and settlement occur over time due to loads acting from the surface layer. One way to solve this problem is to use Geocell. Geocell can be used for structural reinforcement for erosion prevention, ground stabilization on flat and steep slopes, load bearing, and ground preservation. In this study, analyzed road pavement application cases using Geocell and purpose of this study is to analyze the bearing capacity of a road paving method including Geocell using field tests and LFWD(Light Falling Weight Deflectometer) equipment. In addition, the bearing capacity was compared and analyzed with the existing traditional road pavement method.

Behavior characteristics of Light-Weight Pavement Using Centrifuge Test (원심모형실험을 이용한 경량포장체의 거동특성)

  • Kim, Seong-Kyum;Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.5176-5183
    • /
    • 2013
  • In general, Korean Lightweight Concrete used Heat insulating material for building and filler for civil construction, backfill material for tunnel, office floor fillers, lightweight blocks and so on. These expand the range of use ALC(autoclaved lightweight concrete) on the soft-ground at regular intervals during road construction by installing piles used as substrates for the process is under study. In this study, behavior characteristics on the soft-ground of pavement analysis was used to test the geo-Centrifuge. Prototype pavement reduced to 1/30 slab form of the composition as kaolinite model tests were conducted in the soft ground. Pile Arrangement (having 36 component pile with an array of $3{\times}12$) was used to group of piles. Tests of gravity 30 level the centrifugal force acting Light-weight pavement models. Based on the Prototype pavement of the behavior characteristics of pavement behavior characteristics were estimated. FMA analysis of the 10 times as big 39.4kg (actual load 35 ton) of the lateral load is applied to the case 7.8mm (actual behavior 23.4mm) behavior was fine.

A Study on the Performance Evaluation and Comparison of Porous and Drainage Pavement Types (투수성 포장과 배수성 포장 구조형식의 성능평가 및 비교 연구)

  • Kim, Dowan;Jeong, Sangseom;Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.47-57
    • /
    • 2018
  • PURPOSES : The permeable pavement type has been rapidly developed for solving problems regarding traffic noise in the area of housing complex and heavy rainwater drainage in order to account for the climate change. In this regards, the objective of this study is to figure out the characteristics of pavement types. METHODS : The laboratory test for deriving optimum asphalt content (OAC) was conducted using the mixtures of the permeable asphalt surface for the pavement surface from Marshall compaction method. Based on its results, the pavement construction at the test field was conducted. After that, the site performance tests for measuring the traffic noise, strength and permeability were carried out for the relative evaluation in 2 months after the traffic opening. The specific site tests are noble close proximity method (NCPX), Light falling deflectometer test (LFWD) and the compact permeability test. RESULTS : The ordered highest values of the traffic noise level can be found such as normal dense graded asphalt, drainage and porous structure types. In the results from LFWD, the strength values of the porous and drainage asphalt types had been lower, but the strength of normal asphalt structure had relatively stayed high. CONCLUSIONS :The porous structure has been shown to perform significantly better in permeability and noise reduction than others. In addition to this study, the evaluation of the properties and the determination of the optimum thickness for the subgrade course under the porous pavement will be conducted using ground investigation technique in the further research.

Performance Evaluation of Carbon-Reducing Soil Pavement using Inorganic Binder (무기계 바인더를 이용한 탄소저감형 흙포장의 성능평가)

  • Yoo, Ji Hyeung;Kawk, Gi Bong;Kim, Dae Sung
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.19-26
    • /
    • 2015
  • PURPOSES : This study intends to develop an inorganic soil pavement material using industrial by-products and to evaluate its applicability as a road pavement material. METHODS : In this study, a compressive strength experiment was conducted based on the NaOH solution molarity and water glass content to understand the strength properties of the soil pavement material according to the mixing ratio of alkali activator. In addition, the strength characteristic of the inorganic soil pavement material was analyzed based on the binder content. The performance of the soil pavement was evaluated by conducing an accelerated pavement test and a falling weight deflectometer (FWD) test. RESULTS : As a result of the soil pavement material test based on the mixture ratio of alkali activator, it was identified that the activator that mixed a 10 M NaOH solution to water glass in a 5:5 ratio is appropriate. As a result of the inorganic soil pavement materials test based on the binder content, the strength development increased sharply when the amount of added binder was over 300 kg; this level of binder content satisfied 28 days of 18 MPa of compression strength, which is the standard for existing soil pavement design. According to the measured results of the FWD test, the dynamic k-value did not show a significant difference before or after the accelerated pavement testing. Furthermore, the effective modulus decreased by approximately 50%, compared with the initial effective modulus for pedestrian pavement. CONCLUSIONS : Based on these results, inorganic soil pavement can be applied by changing the mixture proportions according to the use of the pavement, and can be utilized as road pavement from light load roads to access roads.

A Study on Effect of Geogrid Reinforced- Crushed stone Sub-base in Permeable Pavement System (투수성 포장체 쇄석 보조기층 지오그리드 보강효과 확인에 대한 연구)

  • Kwon, Hyeok-Min;Oh, Jeongho;Han, Shin-in
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.64-70
    • /
    • 2015
  • A rapid urbanization has increased the portion of paved layer that results in the change of water circulation system. This change leads to frequent events of flooding, drought, and urban heat island. To resolve these issues, permeable pavement system based on Low Impact Development (LID) concept is being applied to international urban areas. Therefore it is necessary to establish a rational design procedure for the permeable pavement system that reflects our environmental conditions. iDue to inherent characteristics of permeable pavement system, water infiltrates thorough the layers so it may reduce the bearing capacity of sub-layers. In this study, an effort was made to investigate the effectiveness of geogrid reinforced crushed stone subbase layer based on field experimental program along with a limited numerical analysis. It reveals that geogrid reinforced sections improve the bearing capacity by close to 20%. In addition, a light weight deflectomenter (LWDT) appears to be promising for the compaction quality control of crushed stone subbase layer in order to construct qualified permeable pavement systems.

Embedded Rail Track on the LRT(Tram) (레일 매립궤도의 특성과 노면철도에 적용 가능성에 관한 연구)

  • Lee Ki-Seung;Kim Sung-Chil;Beak Jin-Ki;Go Dong-Chun
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.394-399
    • /
    • 2005
  • Embedded rail track can be described as a track structure that is completely covered within pavement. Rail supported continually on a concrete slab or concrete plinth. There are many kinds of types such as non-resilient track and resilient track, super resilient embedded track (floating slab). Embedded rail track is generally the standard for light rail transit routes because this track has many advantages such as reducing noise, maintenance cost and weight of track. In this paper, decision of track profile is restricted by the optimum levels of the flangeway and the gap between the rail head and the pavement surface of depressing tread zone. By result of this study, embedded rail track can reduce corrosion of rail, internal stress and rail deflection.

  • PDF

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

A Method toy Modifying Dynamically Measured Axle Load Using Tire model (타이어 모델을 이용한 계측 축중의 보상 방법)

  • 조일수;김성욱;이주형;박종연;이동훈;조동일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.437-437
    • /
    • 2000
  • It is more difficult to accurately weigh vehicles in motion than to weigh standing vehicles. The difficulties in weighing vehicles result from sensor Limitations as well as dynamic effects induced by vehicle/pavement interactions, This paper presents a method for improving the accuracy of measured axle load information using the so-called adaptive footprint tire model. The total vehicle weight as well as individual axle weight information are obtained experimentally using two piezoelectric sensors. Results are obtained for a light car, mid-site passenger car, and 2 dump trucks with known weight experimental results show that the proposed method using the tire model is accurate.

  • PDF

A Study on Normal Range of Surface Deflection for Epoxy Asphalt Pavement using Light Weight Deflectormeter (LWD를 활용한 에폭시 아스팔트 포장의 정상 표면처짐 범위 연구)

  • Park, Ki Sun;Kim, Kyung Nam;Kim, Nak Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.229-236
    • /
    • 2015
  • In this study, the resilient modulus test and Light Weight Deflectormeter (LWD) test were conducted to simulate the moving vehicle load for the evaluation of the internal failure of epoxy asphalt pavement. The Measured displacement in the resilient modulus test of epoxy asphalt concrete showed very little residual deformation under repeated loads unlike the conventional asphalt. Therefore, the test results were evaluated as a normal state due to its similarity with elastic deformation. The deflection results from the resilient modulus tests were converted to the surface deflection modulus and the normal range of surface deflection modulus was estimated applying LWD measurement of 1 SIGMA level. Internal failure of pavements were estimated using the suspicious failure range at $60^{\circ}C$ and hysteresis. Internal moisture penetration and a decrease in bonding were observed in partial areas at $140{\mu}m$ of surface deflection. However, the areas showed inflection points in the hysteresis. Field investigation by suggested criterion indicated a high degree of accuracy.

A Feasibility Study on Resilient Modulus of Expanded Polystyrene (EPS) Geofoam as a Flexible Pavement Subgrade Material (연성포장의 노반재료로서 EPS 지오폼의 회복탄성계수에 관한 적합성 연구)

  • Park, Ki-Chul;Chang, Yong-Chai
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.12
    • /
    • pp.63-70
    • /
    • 2011
  • Expanded Polystyrene (EPS) is a type of geosynthetic material manufactured with various strengths, unit weights, and dimensions. Due to recent advances in research on EPS, the use of EPS has increased dramatically. This super light weight material has a unit weight of approximately $0.16{\sim}0.47kN/m^3$, equivalent to 6.3~15.7 of that of most natural soils with conditions of fill materials. In spite of this advantage, it is noted that no standard method of resilient modulus test on EPS geofoam was reported and no literature on resilient modulus test methods for EPS geofoam exist. The main object of this study was to investigate feasibility of the resilient modulus of EPS when it was applied for flexible pavement. The investigation of the feasibility was completed based on the results from triaxial tests.