• Title/Summary/Keyword: Light transmittance rate

Search Result 104, Processing Time 0.026 seconds

Measurement of Step Difference using Digital Holography of ITO Thin Film Fabricated by Sputtering Method (스퍼터링 공법으로 제작한 ITO 박막의 디지털 홀로그래피를 이용한 단차에 대한 측정)

  • Jung, Hyun Il;Shin, Ju Yeop;Park, Jong Hyun;Jung, Hyunchul;Kim, Kyeong-suk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.84-89
    • /
    • 2021
  • Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment (IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구)

  • Kim, D.;Kim, D.I.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.113-117
    • /
    • 2020
  • In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

Growth of Green Pepper (Capsicum annuum L.) in Greenhouse Covered with Light Diffusion Film (산광필름피복 시설 내 풋고추 생육)

  • Hee Chun;Jin Young Kim;Hyun Hwan Kim;Si Young Lee;Yooun Il Nam;Kyung Je Kim
    • Journal of Bio-Environment Control
    • /
    • v.10 no.3
    • /
    • pp.181-186
    • /
    • 2001
  • During the growth of fruit vegetables such as pepper, cucumber and tomato, there are light deficiency under the plant canopy. This study was conducted to clarify the effect of light diffusion film on the stem growth, canopy, flowering and fruiting of green pepper in greenhouse. The transmittance of total solar radiation into greenhouse under woven and double films were 90% and 75% of polyethylene film. And the transmittance of photosynthetically active radiation into greenhouse under woven and double films were 96% and 81% of polyethylene film. However, the light diffusions under woven, double and polyethylene films were 46%, 31% and 9%, respectively. The plant height under polyethylene film covered greenhouse was 96.9% cm, taller than those under woven and double films by 6.5, 13.9 cm. And the third node length under woven film covered greenhouse was 8.6 cm, shorter than those under double and polyethylene films by 2.5, 5.7 cm. Also the first branch angle under woven film covered greenhouse was 61.0$^{\circ}$, larger than those under double and polyethylene films by 2.3, 10.3$^{\circ}$. But there was no clear difference in the node numbers among the covering materials. The rate of curved and sterile fruit under woven film covered greenhouse was smaller than those under double and polyethylene films by 4.6, 5.5% and 1.2, 3.6%. But the contents of vitamin C showed no difference among the covering materials and plant densities.

  • PDF

Changes in Chlorophyll Contents and Photosynthetic Characteristics of Hardwood Species According to Artificial Shade Treatment

  • Choi, Jeong-Ho;Kwon, Ki-Won;Chung, Jin-Chul
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.5
    • /
    • pp.614-620
    • /
    • 2006
  • To study the chlorophyll contents and photosynthetic characteristics of 4 tree species of deciduous hardwoods; Betula platyphylla var. japonica, Zelkova serrata, Acer mono and Prunus sargentii were treated in 3 stages of shading; the full sun treatment, the medium shade treatment with 30% of transmittance comparing to full sun, the intense shade treatment with 8% of transmittance and their changes in chlorophyll contents and photosynthetic characteristics were examined and analyzed. Most hardwoods showed differences in the total chlorophyll contents in the order of May < September < July, however, that in Prunus sargentii increased progressively along with the lapse of time. Concerning the degree of shading, total chlorophyll contents increased in proportion to the level of shading. Betula platyphylla var. japonica and Prunus sargentii showed more than 2-3 times difference between the full sun treatment and the intense shade treatment. The changes in photosynthetic characteristics, the range of the light saturation point of the trees was $1,000{\sim}1,100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in May, before the shading was applied, and the intensity was shown in the order of Betula platyphylla var. japonica > Zelkova serrata > Acer mono > Prunus sargentii. The photosynthetic rate was $6.4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}{\sim}27.1{\mu}mol{\cdot}CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ in the order of Betula platyphylla var. japonica > Prunus sargentii > Acer mono > Zelkova serrata that there were differences between species. Concerning the changes in light saturation point in each growth period after shading treatment, the light saturation point in the full sun treatment was found in the range of $560{\sim}1,100{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and the level of intensity was shown in the order of May > July > September. The light saturation point decreased as the level of shading intensified and the level of changes in light compensation point in the full sun treatment for Betula platyphylla var. japonica and Prunus sargentii was shown in the range of $2.9{\sim}27.1{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ in the order of May > July > September, however, for Zelkova serrata and Acer mono was shown in the range of $3.9{\sim}11.7{\mu}mol{\cdot}CO_2{\cdot}m^{-2}{\cdot}s^{-1}$ in the order of July > May > September that there were differences between species.

Optical Properties of Diamond Like Carbon Films Deposited by Plasma Enhanced CVD (rf PECVD법으로 증착된 DLC film의 광학적 성질)

  • Kim, Moon-Hyup;Song, Jae-Jin;Kim, Seong-Jin
    • Korean Journal of Materials Research
    • /
    • v.11 no.7
    • /
    • pp.550-555
    • /
    • 2001
  • A diamond-like carbon(DLC) films were deposited on the borosilicate glass substrate by radio frequency plasma enhanced chemical deposition(rf-PECVD). The $methane(CH_4)-hydrogen(H_2)$ gas mixture was used as precursor gas. The morphologies, the structure and the optical properties of the DLC films were investigated by SEM, Raman and UV spectrometer. The deposition rate was slightly increased with the hydrogen concentration in the gas mixture and it maintained constant at over 25 sccm of the gas flow rate. The optical band gap calculated by UV spectra decreased with increase of deposition time and DC self bias, but that were not effected by hydrogen content. Most effective parameter on the transmittance of film was bias voltage, especially in the range of ultra violet and visible light.

  • PDF

Structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate (수소 분위기에서 유연 기판 위에 증착된 IZO 박막의 구조적 및 전기적 특성)

  • Jo, D.B.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.29-33
    • /
    • 2012
  • In this study, we have investigated the structural and electrical characteristics of IZO thin films deposited under hydrogen atmosphere on flexible substrate for the OLED (organic light emitting diodes) devices. For this purpose, PES was used for flexible substrate and IZO thin films were deposited by RF magnetron sputtering under hydrogen ambient gases (Ar, $Ar+H^2$) at room temperature. In order to investigate the influences of the hydrogen, the flow rate of hydrogen in argon mixing gas has been changed from 0.1sccm to 0.5sccm. All the samples show amorphous structure regardless of flow rate. The electrical resistivity of IZO films increased with increasing flow rate of $H^2$ under $Ar+H^2$. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO electrodes made by configuration of IZO/$\acute{a}$-NPD/DPVB/$Alq_3$/LiF/Al to elucidate the performance of IZO substrate. OLED devices with the amorphous-IZO (a-IZO) anode film show good current density-voltage-luminance characteristics. This suggests that flat surface roughness and low electrical resistivity of a-IZO anode film lead to more efficient anode material in OLED devices.

Passivation of organic light emitting diodes with $Al_2O_3/Ag/Al_2O_3$ multilayer thin films grown by twin target sputtering system

  • Jeong, Jin-A;Kim, Han-Ki
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.420-423
    • /
    • 2008
  • The characteristics of $Al_2O_3/Ag/Al_2O_3$ multilayer passivaton prepared by twin target sputtering (TTS) system for organic light emitting diodes. The $Al_2O_3/Ag/Al_2O_3$ multilayer thin film passivation on a PET substrate had a high transmittance of 86.44 % and low water vapor transmission rate (WVTR) of $0.011\;g/m^2$-day due to the surface plasmon resonance (SPR) effect of Ag interlayer and effective multilayer structure for preventing the intrusion of water vapor. Using synchrotron x-ray scattering and field emission scanning electron microscope (FESEM) examinations, we investigated the growth behavior of Ag layer on the $Al_2O_3$ layer to explain the SPR effect of the Ag layer. This indicates that an $Al_2O_3/Ag/Al_2O_3$ multilayer passivation is a promising thin film passivation scheme for organic based flexible optoelectronics.

  • PDF

Hybrid Passivation for a Flexible Organic Light Emitting Diode (다층 구조의 Hybrid flexible 박막 기술 연구)

  • Lee, Whee-Won;Kim, Young-Hwan;Seo, Dae-Shik;Kim, Yong-Hoon;Moon, Dae-Gyu;Han, Jeong-In
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.269-270
    • /
    • 2005
  • A hybrid passivation method using parylene and silicon dioxide combination layer for a flexible organic light emitting diode (FOLED) was applied on a polycarbonate substrate. A parylene coating by vapor polymerization method is a highly effective passivation process for the FOLED, and it applies all top surface and the edges of the FOLED device. In order to minimize the permeation of moisture and oxygen from the top surface of the device, an additional layer of silicon dioxide was deposited over the parylene coated layer. It was found that the water vapor transmittance rate (WVTR) of parylene (15 m-in-thickness) / SiO2 (0.3$\mu$m-in-thickness) combination layers deposited on polycarbonate film was decreased under the value of 10-3 g/m2day. The FOLED with the hybrid passivation showed remarkably longer lifetime characteristics in the ambient conditions than the non-passivated FOLED. The lifetime of the passivated FOLED was 400 hours and it was more than ten times over the lifetime of the convectional non-passivated FOLED.

  • PDF

Effects of Plant Age and Cultural Conditions on Leaf Shape of Korean Ginseng (년생 및 재배조건이 인삼의 엽형에 미치는 영향)

  • 이종철;최창렬
    • Journal of Ginseng Research
    • /
    • v.8 no.2
    • /
    • pp.178-183
    • /
    • 1984
  • This study was conducted to know the influence of plant age and cultural conditions such as plant population density and light intensity under the shading on the leaf shape of panax ginseng. The result obtained were as follows; 1) Leaf length(L)/maximum width(W) was no difference with different age of over 3-over 3year old plant, but that of 1 or 2-yearold was smaller than those of over 3-year old. The values of L/W showed in the order of 2 or 4,3, 1 or 5 leaflet. 2) Ratios of leaflet area to leaf area were 32.0% in leaflet 3, from 209.% to 27.9% in leaflet 2 or 4, and from 6.5% to 7.1% in leaflet 1 or 5. 3) The coefficients of variability for L/W and ratio of leaflet area to leaf area of leaflet 3 were smallest among leaflets. 4) There were significant differences between largest and smallest leaflet 3, leaf areas and ratio of leaflet 3 area to leaf area in same plant. 5) LW and ratio of leaflet 3 area to leaf area were not affected by plant population density. 6) It showed a tendency that the L/W was increased with increasing the light transmittance rate (LTR). The ratio of leaflet 3 area to leaf area of ginseng grown under 20% LTR was not different comparing to that of plant grown under 5% LTR, but it was significantly increased in plant grown at 100% LTR.

  • PDF

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur;Hyun Sung Lee;Chang Joo Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.419-429
    • /
    • 2023
  • Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.