DOI QR코드

DOI QR Code

A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment

IPL 처리를 통한 고분자 나노구조의 기계적 특성 향상 연구

  • Kim, D. (Department of Opto-Mechatronics Engineering, Pusan National University) ;
  • Kim, D.I. (Opto-mechatronics Research Institute, Pusan National University) ;
  • Jeong, M.Y. (Department of Opto-Mechatronics Engineering, Pusan National University)
  • 김도아 (부산대학교 광메카트로닉스공학과) ;
  • 김두인 (부산대학교 광메카트로닉스연구소) ;
  • 정명영 (부산대학교 광메카트로닉스공학과)
  • Received : 2020.12.24
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

In this paper, We investigated the effect of heat treatment process using photo-thermal effect in order to improve mechanical properties of nanostructure on polymer films made by nanoimprint process with hybrid resin. Nanostructures which have a low refractive characteristic were fabricated by UV nanoimprint and after that heat treatment was performed using IPL (intense pulsed light) under process condition of 550 V voltage, pulse width 5 ms, frequency 0.5 Hz. The transmittance and mechanical property of fabricated nanostructure films were evaluated to observe changes in the pattern transfer rate and mechanical properties of nanostructures. The transmittance of the nanostructure was measured at 97.6% at 550 nm wavelength. Nanoindentation was performed to identify improved anti-scatch properties. Result was compared by the heat source. In case of post treatment with IPL, hardness was 0.51 GPa and in the case of hotplate was 0.27 GPa, resulting the increase of hardness of 1.8 times. Elastic modulus of IPL treated sample was 5.9GPa and Hotplate treated one was 4GPa, showing the 1.4 time increase.

논문에서는 고분자 나노구조 필름의 기계적 물성을 향상하기 위하여 광열효과를 이용한 열처리 공정을 응용하여 나노임프린트로 제작된 고분자 나노구조 필름의 기계적 물성에 미치는 영향을 규명하였다. Hybrid resin과 UV 나노임프린트을 이용하여 저반사 나노구조를 성형하고 IPL (intense pulsed light)를 이용하여 열처리를 수행한 뒤, 제작된 나노구조 필름의 투과율과 내스크래치성을 평가하여 나노구조의 성형성과 기계적 물성의 변화를 관찰하였다. 나노패턴의 특성에 의해서 나노구조의 투과율은 550 nm 파장에서 97.6%로 고투과율의 기능을 확인하였으며, IPL을 이용한 열처리를 진행한 경우 Hotplate를 이용한 열처리보다 경도는 0.51 GPa로, 0.27 GPa로 열처리한 시편에 비해 1.8배 향상하였으며, 동일 실험 조건에서 탄성율은 Hotplate 이용 시 4 GPa에서 IPL 이용 시 5.9 GPa로 1.4배 증가하였다.

Keywords

References

  1. A. R. Parker and H. E. Townley, "Biomimetics of photonic nanostructu res", Nat. Nanotechnol., 2(6), 347 (2007). https://doi.org/10.1038/nnano.2007.152
  2. C.-J. Ting, M.-C. Huang, H.-Y. Tsai, C.-P. Chou, and C.-C. Fu, "Low cost fabrication of the large-area anti-reflection films from polymer by nanoimprint/hot-embossing technology", Nanotechnology, 19(20), 205301 (2008). https://doi.org/10.1088/0957-4484/19/20/205301
  3. Z. Jia, J. Choi, and S. Park, "Selection of UV-resins for nanostructured molds for thermal-NIL", Nanotechnology, 29(36), 365302 (2018). https://doi.org/10.1088/1361-6528/aacd33
  4. Y. H. Sung, Y. D. Kim, H. J. Choi, R. Shin, S. Kang, and H. Lee, "Fabrication of superhydrophobic surfaces with nano-inmicro structures using UV-nanoimprint lithography and thermal shrinkage films", Applied Surface Science, 349, 169 (2015). https://doi.org/10.1016/j.apsusc.2015.04.141
  5. N. Kim, J. Kim, H. S. Lim, and S. H. Kim, "Technological Trend of Special Coating Materials for Surface functionalisation", Journal of Adhesion and Interface, 18(2), 82 (2017).
  6. S. Sprenger, "Nanosilica-Toughened Epoxy Resins", Polymers, 12(8), 1777 (2020). https://doi.org/10.3390/polym12081777
  7. X. Chen and K. E. Gonsalves, "Synthesis and properties of an aluminum nitride/polyimide nanocomposite prepared by a nonaqueous suspension process", Journal of materials research, 12(5), 1274 (1997). https://doi.org/10.1557/JMR.1997.0176
  8. S. Amberg-Schwab, E. Arpac, W. Glaubitt, K. Rose, G. Schottner, and U. Schubert, "Materials Science Monographs-High Performance Ceramic Films and Coatings", Ed., P. Vincenci, pp.203, Elsevier, Amsterdam (1991).
  9. J. S. Jr. Humphrey, "Polycarbonate article coated with an adherent, durable, silica filled organopolysiloxane coating and process for producing same", U.S. Patent No. 4,188,451. (1980).
  10. C. J. Brinker and G. W. Scherer, "Sol-gel science: the physics and chemistry of sol-gel processing", Academic press, (2013).
  11. Sunhan M&T Co. Ltd., and KITECH, "Coating composition for forming scratch resistant silica thin layers containing silica nano-particles of different sizes, method of preparing the same", KR101302720B1 (2013).
  12. Y. Y. Yu, C. Y. Chen, and W. C. Chen, "Synthesis and characterization of organic-inorganic hybrid thin films from poly (acrylic) and monodispersed colloidal silica", Polymer, 44(3), 593 (2003). https://doi.org/10.1016/S0032-3861(02)00824-8
  13. E. K. Lee, K. Eun, Y. S. Ahn, Y. T. Kim, M. W. Chon, and S. H. Choa, "Alternative sintering technology of printed nanoparticles for roll-to-roll process", J. Microelectron. Packag. Soc., 21(4), 15 (2014). https://doi.org/10.6117/kmeps.2014.21.4.015
  14. H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, "Intense pulsed light sintering of copper nanoink for printed electronics", Applied Physics A, 97(4), 791 (2009). https://doi.org/10.1007/s00339-009-5360-6
  15. D. J. Lee, S. H. Park, S. Jang, H. S. Kim, J. H. Oh, and Y. W. Song, "Pulsed light sintering characteristics of inkjetprinted nanosilver films on a polymer substrate", Journal of Micromechanics and Microengineering, 21(12), 125023 (2011). https://doi.org/10.1088/0960-1317/21/12/125023
  16. J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, "Gold nanocages as photothermal transducers for cancer treatment", Small, 6(7), 811 (2010). https://doi.org/10.1002/smll.200902216
  17. J. Qiu and W. D. Wei, "Surface plasmon-mediated photothermal chemistry", The Journal of Physical Chemistry C, 118(36), 20735 (2014). https://doi.org/10.1021/jp5042553
  18. S. Thomsen, "Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions", Photochemistry and photobiology, 53(6), 825 (1991). https://doi.org/10.1111/j.1751-1097.1991.tb09897.x
  19. S. L. Jacques and S. A. Prahl, "Modeling optical and thermal distributions in tissue during laser irradiation", Lasers in surgery and medicine, 6(6), 494 (1987). https://doi.org/10.1002/lsm.1900060604
  20. S. Rastegar, M. Motamedi, A. J. Welch, and L. J. Hayes, "A theoretical study of the effect of optical properties in laser ablation of tissue", IEEE Transactions on Biomedical Engineering, 36(12), 1180 (1989). https://doi.org/10.1109/10.42112
  21. B. R. Kamat, S. V. Tang, K. A. Arndt, R. S. Stern, J. M. Noe, and S. Rosen, "Low-fluence CO2 laser irradiation: selective epidermal damage to human skin", Journal of Investigative Dermatology, 85(3), 274 (1985). https://doi.org/10.1111/1523-1747.ep12276758
  22. S. J. Kim, M. Jang, H. Y. Yang, J. Cho, H. S. Lim, H. Yang, and J. A. Lim, "Instantaneous pulsed-light cross-linking of a polymer gate dielectric for flexible organic thin-film transistors", ACS Applied Materials & Interfaces, 9(13), 11721 (2017). https://doi.org/10.1021/acsami.6b14957
  23. N. E. Yeo, W. K. Cho, D. I. Kim, and M. Y. Jeong, "Durability Improvement of Functional Polymer Film by Heat Treatment and Micro/nano Hierarchical Structure for Display Applications", J. Microelectron. Packag. Soc., 25(4), 47 (2018). https://doi.org/10.6117/KMEPS.2018.25.4.047
  24. Y. Du, B. A. Williams, L. F. Francis, and A. V. McCormick, "Pulsed irradiation for high-throughput curing applications", Progress in Organic Coatings, 104, 104 (2017). https://doi.org/10.1016/j.porgcoat.2016.12.012