• Title/Summary/Keyword: Light resistance

Search Result 1,039, Processing Time 0.028 seconds

Relationship between Arc Resistance and Light Reflectance of PTFE Composites (PTFE 복합재료의 내아크성과 광반사율)

  • Park, Hoy-Yul;Kang, Dong-Pil;Han, Dong-Hee;Ahn, Myeong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1355-1356
    • /
    • 2001
  • An experimental study on arc resistance and light reflectance of PTFE is presented. PTFE has been used widely as a material for circuit breaker nozzle. In the arcing environment, radiative power incident upon the nozzle wall may be transmitted through the nozzle material. Adding some fillers into PTFE was expected to be efficient in improving the endurability to radiation.

  • PDF

Fire Resistance of Inorganic Polymer Composites for Repair and Rehabilitation (보수.보강에 사용하는 무기계 폴리머 복합재료의 내열성능)

  • Balaguru, P.N.;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.647-652
    • /
    • 1997
  • Repair and rehabilitation of existing structures is becoming a major part of construction, both in the industrially developed and developing countries. Advanced high strength composites are being utilized more and more for these applications because they are much stronger than steel, non-corrosive, and light. The light weight reduces the construction cost and time sustantially. The fibers are normally made of aramid, carbon, or glass and the binders are typically epoxies or esters. One major disadvantage of these composites is the vulnerability to fire. In most instance, the temperature cannot exceed $300^{\cire}C$. Since carbon and glass can substain high temperatures, an inorganic polymer is being evaluated for use as a matrix. The matrix can sustain more than $1000^{\cire}C$. The results reported in this paper deal with the mechanical properties of carbon composites made with the inorganic polymer and the behavior strengthened reinforced concrete beams. The results indicate that the new matrix can be successfully utilized for a number of applications.

  • PDF

Development of a Very Small LED Lamp with a Low-Thermal-Resistance Lead Frame for an LCD Backlight Unit

  • Yu, Soon-Jae;Kim, Do-Hyung;Choi, Yong-Seok;Kim, Hee-Tae
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.49-53
    • /
    • 2009
  • In this study, a very small LED packaging lead frame with a low thermal resistance was developed. The cost of the package process was reduced by the use of many small LED lamps, which increased the light emission efficiency. Compared to the large lead frame lamp, however, the optical property of the small LED packaging lead frame lamp was not sufficiently improved because its reflection structure was changed and its reflection area was reduced. The luminous efficiency of the LED lamp reaches 58 lm/W at the current density of 0.16 A/$cm^2$. Using the LED lamps, 46-inch LCD BLU was manufactured. The BLU-made LED lamps have a low power consumption of 146 W and have a slim (10-mm-thick) BLU, keeping good uniformity in terms of brightness, and maintaining good thermal properties.

Characteristic of Insulation with Moisture Content Light-weight Inorganic Foam Ceramic Board (경량무기발포 세라믹보드 및 무기단열재의 함수율에 따른 단열특성)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.198-199
    • /
    • 2013
  • To prevent energy waste in buildings used heat insulator. Heat insulator materials can be classified inorganic and organic. The inorganic material has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. Technologies on energy saving and materials used in curtain walls have progressed with increase of high-rise and large buildings. However, there is little study to explain water resistance performance of the curtain walls. This study focused on evaluation of insulation of inorganic materials and performance evaluation by thermal conductivity.

  • PDF

Voltage and frequency dependent electrical properties in organic light-emitting diodes of $ITO/Alq_3/Al$ ($ITO/Alq_3(60nm)/Al$의 유기 발광 소자에서 바이어스 전압과 주파수에 따른 전기적 특성)

  • Chung, Dong-Hoe;Oh, Hyun-Seok;Hur, Sung-Woo;Lee, Won-Jae;Song, Min-Jong;Lee, Joon-Ung;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.464-468
    • /
    • 2003
  • Complex impedances with frequency and voltage variation were analyzed in $ITO/Alq_3(60nm)/Al$ device structure. At low frequency, complex impedance is mostly expressed by resistive component, and at the high frequency by resistance and capacitive component. We have also evaluated resistance, capacitance and permittivity.

  • PDF

Developing Low Cost, High Throughput Si Through Via Etching for LED Substrate (LED용 Si 기판의 저비용, 고생산성 실리콘 관통 비아 식각 공정)

  • Koo, Youngmo;Kim, GuSung;Kim, Sarah Eunkyung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.19-23
    • /
    • 2012
  • Silicon substrate for light emitting diodes (LEDs) has been the tendency of LED packaging for improving power consumption and light output. In this study, a low cost and high throughput Si through via fabrication has been demonstrated using a wet etching process. Both a wet etching only process and a combination of wet etching and dry etching process were evaluated. The silicon substrate with Si through via fabricated by KOH wet etching showed a good electrical resistance (${\sim}5.5{\Omega}$) of Cu interconnection and a suitable thermal resistance (4 K/W) compared to AlN ceramic substrate.

Equivalent-Circuit Analysis of Organic Light-Emitting Diodes using Frequency-dependent Response of $ITO/Alq_3/Al$ Device ($ITO/Alq_3/Al$ 소자의 주파수 의존 응답을 이용한 유기 발광소자의 등가회 로 분석)

  • Ahn, Joon-Ho;Chung, Dong-Hoe;Hur, Sung-Woo;Lee, Joon-Ung;Song, Min-Jong;Lee, Won-Jae;Kim, Tae-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.5-8
    • /
    • 2004
  • We have investigated equivalent-circuit analysis of organic light-emitting diodes using frequency-dependent response of $ITO/Alq_3(60nm)/Al$ device at two different bias voltages. Complex impedance Z of the device was measured in the frequency range of 40Hz~1MHz. A Cole-Cole plot shows that there are two dielectric relaxations at the bias below turn-on voltage, and one relaxation at the bias above turn-on voltage. We are able to interpret the frequency-dependent response in terms of equivalent-circuit model of contact resistance $R_s$ in series with parallel combination of resistance $R_p$ and capacitance $C_p$. We have obtained contact resistance $R_s$ around $90{\Omega}$, mainly from the ITO anode.

  • PDF

Complex Impedance Analysis of $ITO/Alq_3/Al$ device structure (ITO/$Alq_3$/Al 소자 구조의 합성 임피던스 분석)

  • Chung, Dong-Hoe;Kim, Sang-Keol;Lee, Joon-Ung;Jang, Kyung-Uk;Lee, Won-Jae;Song, Min-Jong;Chung, Teak-Gyun;Kim, Tae-Wan;Lee, Ki-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.438-439
    • /
    • 2006
  • We have used ITO/$Alq_3$/Al structure to study complex impedance in $Alq_3$ based organic light emitting diode. Equivalent circuit was analyzed in a device structure of ITO/$Alq_3$/Al by varying the thickness of $Alq_3$ layer from 60 to 400nm. The impedance results can be fitted using equivalent circuit model of parallel combination resistance $R_p$ and capacitance $C_p$ with a small series resistance $R_s$.

  • PDF

Effects of Si Addition on the Microstructure and Properties of Cr-Al alloy for High Temperature Coating (고온 코팅용 Cr-Al합금의 미세조직 및 특성에 미치는 Si 첨가의 영향)

  • Kim, Jeong-Min;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.7-10
    • /
    • 2019
  • Cr-Al alloys are attracting attention as oxidation resistant coating materials for high temperature metallic materials due to their excellent high temperature stability. However, the mechanical properties and oxidation resistance of Cr-Al alloys can be further enhanced, and such attempts are made in this study. To improve the properties of Cr-Al alloys, Si is added up to 5 wt%. Casting specimens with different amounts of Si content are prepared by a vacuum arc remelting method and isothermally heated under steam conditions at $1,100^{\circ}C$ for 1 hour. The as-cast microstructure of low Si alloys is mainly composed of only a Cr phase, while $Al_8Cr_5$ and $Cr_3Si$ phases are also observed in the 5 % Si alloy. In the high Si alloy, only Cr and $Cr_3Si$ phases remain after the isothermal heating at $1,100^{\circ}C$. It is found that Si additions slightly decrease the oxidation resistance of the Cr-Al alloy. However, the microhardness of the Cr-Al alloy is observed to increase with an increasing Si content.

Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings (실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향)

  • Kwon, Eui Pyo;Kim, Se Woong;Lee, Jong Kweon
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.