• Title/Summary/Keyword: Light resistance

Search Result 1,040, Processing Time 0.029 seconds

Use of a Transformed Diode Equation for Characterization of the Ideality Factor and Series Resistance of Crystalline Silicon Solar Cells Based on Light I-V Curves (Light I-V 곡선을 이용한 결정질 태양전지의 이상계수와 직렬 저항 특성 분석)

  • Jeong, Sujeong;Kim, Soo Min;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.26 no.8
    • /
    • pp.422-426
    • /
    • 2016
  • With the increase in installed solar energy capacity, comparison and analysis of the physical property values of solar cells are becoming increasingly important for production. Therefore, research on determining the physical characteristic values of solar cells is being actively pursued. In this study, a diode equation, which is commonly used to describe the I-V behavior and determine the electrical characteristic values of solar cells, was applied. Using this method, it is possible to determine the diode ideality factor (n) and series resistance ($R_s$) based on light I-V measurements. Thus, using a commercial screen-printed solar cell and an interdigitated back-contact solar cell, we determined the ideality factor (n) and series resistance ($R_s$) with a modified diode equation method for the light I-V curves. We also used the sun-shade method to determine the ideality factor (n) and series resistance ($R_s$) of the samples. The values determined using the two methods were similar. However, given the error in the sun-shade method, the diode equation is considered more useful than the sun-shade method for analyzing the electrical characteristics because it determines the ideality factor (n) and series resistance ($R_s$) based on the light I-V curves.

Fire resistance of Light-weight Ceramic Board for Exterior Fire resistance Material (경량세라믹보드의 외장재 적용을 위한 화재성능평가)

  • Shin, Hyeon-Uk;Song, Hun;Chu, Yong-Sik;Lee, Jong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.119-120
    • /
    • 2016
  • This study is about development of inorganic insulation material using by-product materials. The organic material is due to toxic gas emission, when a fire occurs. And it has lower water resistance. The inorganic material is heavy and worse thermal performance than organic materials. In this study, installed light weight ceramic insulation by concrete structure to evaluation fire resistance.

  • PDF

A Study on the Heat Resistance of Light-Weight Polymer Concrete Composites (경량 폴리머 콘크리트 복합체의 내열성능에 관한 연구)

  • Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.6
    • /
    • pp.131-137
    • /
    • 2008
  • In recent years, the light-weight aggregate has widely been used to reduce the weight of construction structures, and to achieve the thermal insulation of building structures. The purpose of this study is to evaluate the heat resistance of polymer concrete composites with light-weight aggregate made by binders as resin and cement with polymer dispersion. The light-weight polymer concrete composites are prepared with various conditions such as binder content, filler content, void-filling ratio, light-weight aggregate content and polymer-cement ratio, and tested for heat resistant test, and measured the weight reducing ratio, strengths and exhaustion content of gas such as CO, NO and $SO_2$. From the test results, the weight reducing ratio of light weight polymer concrete using UP binder after heat resistance test increase with an increase in the UP content irrespective of the filler content. The weight reducing ratio of polymer cement concrete is considerably smaller than that of UP concrete. In general, the strengths after heat resistance of polymer concrete composites are reduced about 40 to 65% compared with those before test. The exhausted quantity of CO, NO and $SO_2$ gases in polymer concrete composites is less than EPS(Expanded poly styrene). From the this study, it is confirmed that the many types gases discharge according to binder type of polymer concrete composites, its amount is controlled by selection of the binder type and mix proportions.

Efficiency Improvement in Screen-printed Crystalline Silicon Solar Cell with Light Induced Plating (광유도도금을 이용한 스크린 프린팅 결정질 실리콘 태양전지의 효율 향상)

  • Jeong, Myeong Sang;Kang, Min Gu;Chang, Hyo Sik;Song, Hee-Eun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.3
    • /
    • pp.246-251
    • /
    • 2013
  • Screen printing is commonly used to form the front/back electrodes in silicon solar cell. But it has caused high resistance and low aspect ratio, resulting in decreased conversion efficiency in solar cell. Recently the plating method has been combined with screen-printed c-Si solar cell to reduce the resistance and improve the aspect ratio. In this paper, we investigated the effect of light induced silver plating with screen-printed c-Si solar cells and compared their electrical properties. All wafers were textured, doped, and coated with anti-reflection layer. The metallization process was carried out with screen-printing, followed by co-fired. Then we performed light induced Ag plating by changing the plating time in the range of 20 sec~5min with/without external light. For comparison, we measured the light I-V characteristics and electrode width by optical microscope. During plating, silver ions fill the porous structure established in rapid silver particle sintering during co-firing step, which results in resistance decrease and efficiency improvement. The plating rate was increased in presence of light lamp, resulting in widening the electrode with and reducing the short-circuit current by shadowing loss. With the optimized plating condition, the conversion efficiency of solar cells was increased by 0.4% due to decreased series resistance. Finally we obtained the short-circuit current of 8.66 A, open-circuit voltage of 0.632 V, fill factor of 78.2%, and efficiency of 17.8% on a silicon solar cell.

Development of high performance patching repair mortars with light weight and sulfuric acid resistance properties (경량 및 내황산 특성을 가진 고성능 단면복구 모르타르의 개발)

  • Kim, Kyoungmin;Park, Junhui;Ahn, Tae-ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.4
    • /
    • pp.167-172
    • /
    • 2017
  • In this study, high performance patching repair mortars with light weight and sulfuric acid resistance properties were suggested. Their performance estimation were investigated based on KS F 4042 using patching repair mortar with light weight aggregate and soluble polymer of Type I and sulfuric acid resistance mortar of Type II, From these results, it was confirmed that these motors were satisficed and improved by all standard tests of KS F 4042.

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

Effects of Environmental Factors on the Cambial Electrical Resistance of Woody Plants (목본식물 형성층 전기저항에 영향을 주는 환경 요인)

  • Kim, Dong-Uk;Kim, Min-Soo;Lee, Bu-Yong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.105-113
    • /
    • 2007
  • This study was conducted to analyze the effects of environmental factors such as soil moisture, light intensity, temperature and humidity on changes in cambial electrical resistance. To improve data quality, cambial electrical resistance was continuously measured at fixed points by using a data logger isolated from alternating current. The relationship between environmental factors and changes in cambial electrical resistance was also analyzed. The results are as follows: 1. Cambial electrical resistance is highly correlated to the temperature of the measured area(r=-0.934). Therefore, temperature compensation is needed to analyze the effects of other environmental factors on cambial electrical resistance changes. 2. If temperature is compensated for, the change of cambial electrical resistance is highly correlated to water vapor pressure(r=-0.836). 3. If temperature and humidity are compensated for, the change of cambial electrical resistance is highly correlated to intensity of light(r=-0.738). 4. Diurnal deviation of soil water potential is not more significantly related than the change of cambial electrical resistance. However, in the long-term, soil water potential and cambial electrical resistance are highly correlated(r=-0.831). This indicates that soil moisture significantly influences the long-term change of cambial electrical resistance.

Study on the Fire Resistance of Light Weight Inorganic Polymer Concrete Panel Wall (Inorganic Polymer Concrete를 이용한 경량패널의 내화특성에 관한 실험적 연구)

  • Hwang, Ji-Soon;Kim, Woo-Jae;Kim, Dae-Hoi;Park, Dong-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.205-206
    • /
    • 2011
  • Inorganic Polymer Concrete, a type of Alkali activated cement and concrete, is known for various excellent performances, especially for better performance in the area of high temperature heat resistance(thermal characteristic) than portland cement concrete.In this study, light weight concrete panel was manufactured using this Inorganic Polymer Concrete and then evaluated for fire resistance with a small-scale heating furnace. Since the result showed excellent fire resistance, it is considered usable for manufacturing fire resistant concrete panel wall.

  • PDF

Study on the Thermal Dissipation Characteristics of 16-chip LED Package with Chip Size (16칩 LED 패키지에서 칩 크기에 따른 방열특성 연구)

  • Lee, Min-San;Moon, Cheol-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.4
    • /
    • pp.185-192
    • /
    • 2012
  • p-n junction temperature and thermal resistance of Light Emitting Diode (LED) package are affected by the chip size due to the change of the thermal density and the external quantum efficiency considering the heat dissipation through conduction. In this study, forward voltage was measured for two different size LED chips, 24 mil and 40 mil, which consist constitute 16-chip package. p-n junction temperature and thermal resistance were determined by thermal transient analysis, which were discussed in connection with the electrical characteristics of the LED chip and the structure of the LED package.

Lateral Resistance of Reinforced Light-Frame Wood Shear Walls

  • Hyung Woo LEE;Sang Sik JANG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.58-66
    • /
    • 2023
  • In light-frame timber construction, the shear wall is one of the most important components that provide resistance to lateral loads such as earthquakes or winds. According to KDS (Korea Design Standard) 42 50 10, shear walls are to be constructed using wood-based structural sheathing, with studs connected by 8d nails spaced 150 mm along the edge and 300 mm in the field. Even though small-scale residential timber building can be designed to exhibit seismic resistance using light-frame timber shear walls in accordance with KDS 42 50 10, only the abovementioned standard type of timber shear wall is available. Therefore, more types of timber shear walls composed of various materials should be tested to measure their seismic resistance, and the results should be incorporated into the future revision of KDS 42 50 10. In this study, the seismic resistance of shear walls composed of structural timber studs and wood-based structural sheathing with reinforced nailing is tested to evaluate the effects of the reinforcement. For the nailing reinforcement, shear wall specimens are constructed by applying nail spacings of 75-150 mm and 50-100 mm. For the shear wall specimens with one sheathing and reinforced nailing, the shear strengths are 1.7-2.0 times higher than that of the standard shear wall (nail spacing of 150-300 mm). The shear strength of the shear walls with sheathing on both sides is 2.0-2.7 times higher than that of the standard shear wall.