• Title/Summary/Keyword: Light reduction rate

Search Result 236, Processing Time 0.037 seconds

Dyeing Properties and Antimicrobial Activity of Soybean Fiber with Gromwell Colorants (대두섬유에 대한 자초색소의 염색성 및 항균성)

  • Choi, Hee;Shin, Youn-Sook;Choi, Chang-Nam;Kim, Sang-Yool;Chung, Yong-Sik
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.119-123
    • /
    • 2007
  • Dyeing properties of soybean fabrics on gromwell colorants were studied for the effect of dyeing conditions, such as colorants concentration, temperature, time and pH on the dye uptake and effect of mordants on color change, dye uptake and various colorfastness. Antimicrobial activity of soybean fabrics dyed and sim-mordanted with gromwell colorants was examined by shake flask method. Gromwell colorants showed considerably affinity to soybean fabric and its isotherm adsorption curve was Freundlich type. Therefore, it is considered that hydrogen bonding and Van der Waals force were involved in the adsorption of gromwell colorants to soybean fabric. Soybean fabrics showed R color on Al, Cu and Sn mordant, RP color on Cr and Fe mordant, but soybean fabrics showed low dye uptake depending on mordanting treatment. Light colorfastness was increased for Cr and Fe mordants. Staphylococcus aureus reduction rates were above 90% for Cr and Cu mordanted soybean fabrics, and the others were poor. Klebsiella pneumoniae reduction rates soybean fabrics did not show reduction rate hardly.

Electrochemical Behavior of Mordant Red 19 and its Complexes with Light Lanthanides

  • Sang Kwon Lee;Taek Dong Chung;Song-Ju Lee;Ki-Hyung Chjo;Young Gu Ha;Ki-Won Cha;Hasuck Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.5
    • /
    • pp.567-574
    • /
    • 1993
  • Mordant Red 19(MR19) is reduced at mercury electrode at -0.67 V vs. Ag/AgCl with two electrons per molecule in pH 9.2 buffer by differential pulse polarography and linear sweep voltammetry. The peak potential is dependent on the pH of solution. The exhaustive electrolysis, however, gives 4 electrons per molecule because of the disproportionation of the unstable hydrazo intermediate. The electrochemical reduction of lanthanide-MR19 complexes is observed at more cathodic potential than that of free ligand. The difference in peak potentials between complex and free ligand varies from 75 mV for $La^{3+}$ to 165 mV for $Tb^{3+}$ and increases with increasing the atomic number of lanthanide. The electrochemical reduction of lanthanide complexes with MR19 is due to the reduction of ligand itself, and it can be potentially useful as an indirect method for the determination of lanthanides. The shape of i-E curves and the scan rate dependence indicates the presence of adsorption and the adsorption was confirmed by potential double-step chronocoulometry and the effect of standing time. Also the surface excess of the adsorbed species and diffusion coefficients are determined. The composition of the complex is determined to be 1 : 2 by spectrophotometric and electrochemical methods.

Effects of organic carbon and UV wavelength on the formation of dissolved gaseous mercury in water under a controlled environment

  • Lee, Jae-In;Yang, Ji-Hye;Kim, Pyung-Rae;Han, Young-Ji
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.54-62
    • /
    • 2019
  • The effects of UV wavelength and dissolved organic carbon (DOC) on the formation of dissolved gaseous mercury (DGM) were investigated in a controlled environment. To remove any other influences than UV wavelength and DOC, purified water was used as the working solution. DGM was instantly produced with irradiation of all UV lights even without DOC; whereas, there was no noticeable increase of DGM during irradiation of visible light. The amount of formed DGM increased as the DOC concentration increased even in dark conditions; however, UV-B irradiation significantly promoted DGM production with DOC present. The rate constants of reduction ranged from $1.4{\times}10^{-6}s^{-1}$ to $3.5{\times}10^{-5}s^{-1}$, with the lower values occurring under the dark condition without DOC and the higher values resulting under UV-B irradiation and high DOC concentration. However, DGM production was not linearly correlated with the DOC concentration at higher range of DOC in this study. Future studies should investigate the effects of DOC concentration on mercury (Hg) reduction over the broad range of DOC concentrations with different DOC structures and with other influencing parameters.

Synthesis and Magnetic Property of Nanocrystalline Fe-Ni-Co Alloys during Hydrogen Reduction of Ni0.5Co0.5Fe2O4 (Ni0.5Co0.5Fe2O4의 수소환원에 의한 나노구조 Fe-Ni-Co 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.167-173
    • /
    • 2011
  • Nickel cobalt ferrite($Ni_{0.5}Co_{0.5}Fe_2O_4$) powder was prepared through the ceramic route by the calcination of a stoichiometric mixture of NiO, CoO and $Fe_2O_3$ at $1100^{\circ}C$. The pressed pellets of $Ni_{0.5}Co_{0.5}Fe_2O_4$ were isothermally reduced in pure hydrogen at $800{\sim}1100^{\circ}C$. Based on the thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and the various reduction products were characterized by X-ray diffraction, scanning electron microscopy, reflected light microscope and vibrating sample magnetometer to reveal the effect of hydrogen reduction on the composition, microstructure and magnetic properties of the produced Fe-Ni-Co alloy. The arrhenius equation with the approved mathematical formulations for the gas solid reaction was applied to calculate the activation energy($E_a$) and detect the controlling reaction mechanisms. In the initial stage of hydrogen reduction, the reduction rate was controlled by the gas diffusion and the interfacial chemical reaction. However, in later stages, the rate was controlled by the interfacial chemical reaction. The nature of the hydrogen reduction and the magnetic property changes for nickel cobalt ferrite were compared with the previous result for nickel ferrite. The microstructural development of the synthesized Fe-Ni-Co alloy with an increase in the reduction temperature improved its soft magnetic properties by increasing the saturation magnetization($M_s$) and by decreasing the coercivity($H_c$). The Fe-Ni-Co alloy showed higher saturation magnetization compared to Fe-Ni alloy.

Combination Dyeing of Silk Fabrics with Dansam and Sappan Wood (단삼과 소목을 이용한 견직물의 복합염색)

  • Nam, Jeongran;Lee, Jeongsook
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.314-326
    • /
    • 2013
  • The purpose of this research is to analyze the effects of Dansam and Sappan wood extract to perform combination dyeing on silk fabrics, with respect to color changes, fastness (washing, dry cleaning, perspiration, rubbing and light fastness), and functionality (antibacterial activity and deodorization). Combination dyeing was performed by first combining Dansam with Sappan wood, then Sappan wood with Dansam, in these orders. Given the changes in the combination ratio, pre-mordant treatment was performed. Looking at the surface colors of each dye, Dansam generally produces YR color series, while Sappan wood produces YR, R, and RP color series. The effects of changing the order in which combination dying was performed on the surface colors were as follows. First, combination dyeing (A) was performed by using Dansam before Sappan wood, to produce YR and R color series. Then combination dyeing (B) was performed by using Sappan wood before Dansam, to produce YR, R, and RP color series. By visual inspections, more similar color changes of the combination dyeing were noticed with the post-dyeing material rather than the pre-dyeing material. Therefore, it was presumably confirmed that surface color changes of combination dyeing were greatly influenced by the post-dyeing color. Individual dyeing tests for fastness showed that Dansam was comparatively superior to Sappan wood, which demonstrated lower fastness to washing, dry cleaning, perspiration, and light, relatively. The fastness of combination dyed samples was shown middle, but similar fastness to the post-dye material, The fastness of (B) method was higher than (A) method in the washing and light fastness. This confirms that color fastness from combination dyeing was considerably influenced by the post-dye material. It was found that all dyed samples had a very high bacterial reduction rate of 99.9% and high deodorization rate of 95%.

Preparation of Bi/Bi2MoO6 Plasmonic Photocatalyst with High Photocatalytic Activity Under Visible Light Irradiation

  • Zou, Chentao;Yang, Zhiyuan;Liang, Mengjun;He, Yunpeng;Yang, Yun;Yang, Shuijin
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850127.1-1850127.13
    • /
    • 2018
  • Bi metal deposited on $Bi_2MoO_6$ composite photocatalysts have been successfully synthesized via a simple reduction method at room temperature with using $NaBH_4$ as the reducing agent. The photocatalytic activity of the composite was evaluated by degradation of rhodamine B (RhB) and bisphenol A (BPA) solution under visible light. The rate constant of $Bi/Bi_2MoO_6$ composite to RhB is 10.8 times that of $Bi_2MoO_6$, and the degradation rate constant of BPA is 6.9 times of that of $Bi_2MoO_6$. Nitrogen absorption-desorption isotherm proved that the increase of specific surface area is one of the reasons for the improvement of photocatalytic degradation activity of $Bi/Bi_2MoO_6$ composites. The higher charge transfer efficiency of $Bi/Bi_2MoO_6$ is found through the characterization of the photocurrent and impedance, which are attributed to the surface plasmon resonance (SPR) effect produced by the introduction of the metal Bi monomer in the composite. Free radical capture experiments proved that cavitation is the main active species. Based on the above conclusions, a possible mechanism of photocatalytic degradation is proposed.

Physiological response of red macroalgae Pyropia yezoensis (Bangiales, Rhodophyta) to light quality: a short-term adaptation

  • Xuefeng Zhong;Shuai Che;Congying Xie;Lan Wu;Xinyu Zhang;Lin Tian;Chan Liu;Hongbo Li;Guoying Du
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.141-150
    • /
    • 2023
  • Light quality is a common environmental factor which influences the metabolism of biochemical substances in algae and leads to the response of algal growth and development. Pyropia yezoensis is a kind of economic macroalgae that naturally grows in the intertidal zone where the light environment changes dramatically. In the present study, P. yezoensis thalli were treated under white light (control) and monochromatic lights with primary colors (blue, green, and red) for 14 days to explore their physiological response to light quality. During the first 3 days of treatment, P. yezoensis grew faster under blue light than other light qualities. In the next 11 days, it showed better adaptation to green light, with higher growth rate and photosynthetic capacity (reflected by a higher rETRmax = 61.58 and Ek = 237.78). A higher non-photochemical quenching was observed in the treatment of red light than others for 14 days. Furthermore, the response of P. yezoensis to light quality also results in the difference of photosynthetic pigment contents. The monochromatic light could reduce the synthesis of all pigments, but the reduction degree was different, which may relate to the spectral absorption characteristics of pigments. It was speculated that P. yezoensis adapted to a specific or changing light environments by regulating the synthesis of pigments to achieve the best use of light energy in photosynthesis and premium growth and metabolism.

Histogram Matching-based Power Reduction Technique for OLED Display (OLED 디스플레이를 위한 히스토그램 정합 기반 파워 소모 저감 기법)

  • Choi, Songwoo;Kim, Young Hwan;Kang, Suk-Ju
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.137-144
    • /
    • 2014
  • In this paper, we propose the histogram matching-based power reduction technique considering the perceptual image quality. The conventional methods cannot analyze the clipping error of an image, and hence, they significantly degrade the image quality when pixels with the clipping error are concentrated on small area. The proposed method generates histograms for various images with different characteristics, and it calculates and stores the optimal clipping rate in a database. Then, it compares the histograms with that of an input image, and selects the histogram and clipping rate with the minimum difference to prevent the image quality degradation. In the experimental results, the proposed method improved the average PSNR and SSIM by up to 15.795 dB and 0.036, compared with the conventional methods.

Effects of Shading at Heading Stage on Yield Components in Rice (출수기 차광이 벼 수량 관련형질에 미치는 영향)

  • 김기식;김승경;허범량;윤경민
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.2
    • /
    • pp.127-133
    • /
    • 1991
  • Experiments were conducted to investigate the effect of light shading around the heading stage on grain yield and its components of rice. Early, medium, and late-maturing varieties were trected with the light shading of 50% and 75% from the reduction division stage to 20 days after heading date. Heading date were delayed 2-3 days, whereas the mid -late varieties, Sangpung- byeo, and Bongkwang- byeo were no significantly affected. Culm length was increased and panicle exsersion was reduced as the shading treatments become higher, and the degree of the shading effect was more intensive at 75% of shading. The rate of spikllet degeneration was higher at the secondary rachis branches than the primary rachis branch. The early maturing varieties showed the higher rate of spikelet degeneration. Spikelet number was reduced 12-15, spikelet sterility was increased and ripening rate was declined by the shading treatments. Grain yield was decreased by 30-40% at the shading treatment of 50%, and 50% at the shade treatment of 75%.

  • PDF

Evaluation of Particulate Matter's Traits and Reduction Effects in Urban Forest, Seoul (서울 청량리 교통섬과 홍릉숲의 미세먼지 특성과 저감효과 평가)

  • Kim, Pyung-Rae;Park, Chan-Ryul
    • Korean Journal of Environment and Ecology
    • /
    • v.35 no.5
    • /
    • pp.569-575
    • /
    • 2021
  • This study analyzed the effect of forests on reducing particulate matter by investigating the particulate matter concentration and influencing factors between urban forest and traffic forest. The concentrations of particulate matter in Hongreung Experimental Forest (urban forest) and a forest (traffic forest) formed at the intersection of Cheongryangri Station in Dongdaemun-gu, Seoul were measured with the light scattering method instrument from January to November 2018. During the study period, the average PM10 concentrations in the urban forest and the traffic forest were 12.5㎍/m3 and 15.7 ㎍/m3, respectively, and the average PM2.5 concentrations were 16.6㎍/m3and 6.9 ㎍/m3, respectively. Comparing the concentration by the urban atmospheric measurement network of the Ministry of Environment and the concentration in urban forests showed that the reduction rate of PM10 was 66.9±28.6% in urbanforest and 58.6±44.1% in traffic forest and that of PM2.5 was 71.3±23.0% and 64.9±31.3%. The difference in the reduction rate of particulate matter is likely related to the size and structure of the urban forest, and the wind velocity is considered the reduction factor.