• Title/Summary/Keyword: Light loads

Search Result 244, Processing Time 0.025 seconds

A Design of Current Mode PWM/PFM DC-DC Boost Converter (전류모드 PWM/PFM DC-DC Boost 변환기 설계)

  • Hwang, In-Ho;Yu, Seong-Mok;Park, Jong-Tae;Yu, Chong-Gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.404-407
    • /
    • 2011
  • This paper presents a design of current mode PWM/PFM DC-DC Boost converter. This DC-DC Boost Converter operates with PWM mode at the heavy loads and with PFM mode at light loads. The DC-DC boost converter is designed with CMOS 0.35${\mu}m$ technology. It operates at 500KHz and can drive a load current up to 600mA. It has a maximum power efficiency of 92.1%. The total chip area is $1300{\mu}m{\times}1070{\mu}m$ including pads. The DC-DC boost converter operates in a wide range of load currents while occupying a small chip area.

  • PDF

Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway (노면 요철을 고려한 AGT 차량의 동적 응답 해석)

  • Song, Jae-Pil;Kim, Chul-Woo;Kim, Ki-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.12
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

Recommended properties of elastic wearing surfaces on orthotrotropic steel decks

  • Fettahoglu, Abdullah
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.357-374
    • /
    • 2015
  • Orthotropic decks composed of deck plate, ribs, cross beams and wearing surface are frequently used in industry to span long distances due to their light structures and load carrying capacities. As a result they are broadly preferred in industry and there are a lot of bridges of this type exist in the world. Nevertheless, some of them cannot sustain the anticipated service life and damages in form of cracks develop in steel components and wearing surface. Main reason to these damages is seen as the repetitive wheel loads, namely the fatigue loading. Solutions to this problem could be divided into two categories: qualitative and quantitative. Qualitative solutions may be new design methodologies or innovative materials, whereas quantitative solution should be arranging dimensions of deck structure in order to resist wheel loads till the end of service life. Wearing surface on deck plate plays a very important role to avoid or mitigate these damages, since it disperses the load coming on deck structure and increases the bending stiffness of deck plate by forming a composite structure together with it. In this study the effect of Elastic moduli, Poisson ratio and thickness of wearing surface on the stresses emerged in steel deck and wearing surface itself is investigated using a FE-model developed to analyze orthotropic steel bridges.

PARAMETER DEPENDENCE OF STEAM EXPLOSION LOADS AND PROPOSAL OF A SIMPLE EVALUATION METHOD

  • MORIYAMA, KIYOFUMI;PARK, HYUN SUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.907-914
    • /
    • 2015
  • The energetic steam explosion caused by contact between the high temperature molten core and water is one of the phenomena that may threaten the integrity of the containment vessel during severe accidents of light water reactors (LWRs). We examined the dependence of steam explosion loads in a typical reactor cavity geometry on selected model parameters and initial/boundary conditions by using a steam explosion simulation code, JASMINE, developed at Japan Atomic Energy Agency (JAEA). Among the parameters, we put an emphasis on the water pool depth that has significance in terms of accident mitigation strategies including cavity flooding. The results showed a strong correlation between the load and the premixed mass, defined as the mass of the molten material in low void zones (void fraction < 0.75). The jet diameter and velocity that comprise the flow rate were the primary factors to determine the premixed mass and the load. The water pool depth also showed a significant impact. The energy conversion ratio based on the enthalpy in the premixed mass was in a narrow range ~4%. Based on this observation, we proposed a simplified method for evaluation of the steam explosion load. The results showed fair agreement with JASMINE.

3D stability of pile stabilized stepped slopes considering seismic and surcharge loads

  • Long Wang;Meijuan Xu;Wei Hu;Zehang Qian;Qiujing Pan
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.639-652
    • /
    • 2023
  • Stepped earth slopes incorporated with anti-slide piles are widely utilized in landslide disaster preventions. Explicit consideration of the three-dimensional (3D) effect in the slope design warrants producing more realistic solutions. A 3D limit analysis of the stability of pile stabilized stepped slopes is performed in light of the kinematic limit analysis theorem. The influences of seismic excitation and surcharge load are both considered from a kinematic perspective. The upper bound solution to the factor of safety is optimized and compared with published solutions, demonstrating the capability and applicability of the proposed method. Comparative studies are performed with respect to the roles of 3D effect, pile location, pile spacing, seismic and surcharge loads in the safety assessments of stepped slopes. The results demonstrate that the stability of pile reinforced stepped slopes differ with that of single stage slopes dramatically. The optimum pile location lies in the upper portion of the slope around Lx/L = 0.9, but may also lies in the shoulder of the bench. The pile reinforcement reaches 10% universally for a looser pile spacing Dc/dp = 5.0, and approaches 70% when the pile spacing reaches Dc/dp = 2.0.

A Study on the Bending Strength of a Built-up Beam Fabricated by the $CO_2$ Arc Spot Welding Method ($CO_2$아크 스폿 용접법에 의한 조립보의 굽힘강도에 관한 연구)

  • 한명수;한종만;이준열
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.143-153
    • /
    • 1997
  • In this study, bending test was performed on the real-scale, built-up beam test model fabricated by the $CO_2$ arc spot welding to evaluate the applicability of the welding method to the production of the stiffened plate in car-carrying ship. The built-up beam models which were fixed at both ends in longitudinal direction or simply supported to the rigid foundation, depending on the restraint condition of the corresponding car decks considered, were subjected to simulated design vehicle loads or concentrated point loads. During the test, the central deflection and the longitudinal bending stresses were measured from several points on the longitudinal flange face to predict the section properties of the built-up beams. The longitudinal bending stress on each spot weld were also measured to calculate the average horizontal shear force subjected to spot welds. Test results revealed that the shear strength of spot welds with their current weld nugget size and welding pitch was adequate enough to withstand the horizontal shear forces under the design vehicle loads. Although the built-up beam fabricated by the arc spot welding was a discontinuous beam, its mechanical behavior was well explained by the continuous beam theory using the effective breadth of plate. Based on test results, the criterion for the size of spot weld of which the average shear stress might meet the allowable stress requirement of AWS Code could be established.

  • PDF

A Study for Farmers to Reduce Work Load on the Different Working Conditions (part I) - Cultivating Lettuce in the Winter Greenhouse - (농민의 작업환경별 노동부담 경감방안에 관한 연구(I) -겨울철 비닐하우스에서 상추재배 작업을 중심으로-)

  • 김명주;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.8 no.2
    • /
    • pp.111-117
    • /
    • 1997
  • In this study we tried to give a decision on propriety of working conditions, to present ideas on reducing work loads. and to grope for efficiency of agricultural works. For this we examined the actual conditions of working environment, farmer's clothes, working posture, working methods, working time, resting state, fatigue recovery methods during cultivating lettuce in the winter greenhouse. And Ive improved harmful factors that affect farmer's health by considering results of previous study and farmer's subjective sensation. And we measured, compared, and analyzed the farmer's work loads before and after improvement. The results of this study are as follows ; 1. According to examine the actual conditions of cultivating lettuce in the winter greenhouse, farmers have experienced physical and mental chronic fatigue on the basis of the hot and humid crops-centered working environment, the rough ground condition, inconsistent arrangement of working stand and sorter, heavy-weared habits. and unsuitable working posture. 2. When we improved harmful factors that affect farmer's health, conformed the positive effects on important work efficiency index such as heart rate, electromyovolume, body temperature, and microclimate inside clothing and work loads were decreased by improving the hot and humid working environment, eliminating the hillock and obstacles of working path. deliver way, arranging the working stand and sorter consistantly, decreasing the clothing weight, improving the working postures and methods as using assistant appliances, alloting the working time and sequence effectively and presenting the light gymnastic exercises and rest for fatigue restoration.

  • PDF

A Study for Farmers to Reduce Work Load on the Different Working Conditions (part II) - Cultivating Welsh Onion in the Summer Ground - (농민의 작업환경별 노동부담경감방안에 관한 연구(II) - 여름철 노지에서 대파재배 작업을 중심으로 -)

  • 김명주;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.8 no.2
    • /
    • pp.119-124
    • /
    • 1997
  • In this study we tried to give a decision on propriety of working conditions, to present ideas on reducing work loads, and to grope for efficiency of agricultural works. For this we examined the actual working conditions of cultivating welsh onion in the summer ground. And we improved harmful factors that affect farmer's health by considering results of previous study and farmer's subjective sensation. And we measured. compared, and analyzed the farmer's work loads before and after improvement. The results of this study are as follows ; 1. According to examine the actual working conditions of cultivating welsh onion in the summer ground, farmers have experienced physical and mental chronic fatigue on the basis of farmer's appel to eye - fatigue and sun - burned skin on hot working environment including excessive ultraviolet rays, the rough ground condition, inconsistent arrangement of working stand and sorter, heavy - weared habits, and unsuitable working posture. 2. When we improved harmful factors that affect farmer's health, conformed the effects on important work efficiency index such as heart rate, electromyovolume, body temperature, and microclimate inside clothing and work loads were decreased by eliminating the hillock and obstacles of ground, decreasing the clothing weight, using proper clothing appliances such as hat and sunglasses, controlling height of working stand and sorter suitably, improving the working postures and methods as using assistant appliances, alloting the working time and sequence effectively and presenting the light gymnastic exercises and rest for fatigue restoration.

  • PDF

Evaluation of Stream Water Quality to Select Target Indicators for the Management of Total Maximum Daily Loads (수질오염총량관리 대상물질 선정을 위한 하천수질 평가)

  • Park, Jun Dae;Park, Jae Hong;Oh, Seung Young;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.630-640
    • /
    • 2013
  • It is one of the most critical steps identifying impaired waterbodies exactly in the selection of target water quality indicators for the management of Total Maximum Daily Loads (TMDLs). Excess ratio and excess level were applied and analyzed by the stream zone basis in order to evaluate water impairment for Nakdong, Geum, Youngsan and Seomjin rivers. Each river basin was divided into stream zones in the light of its watershed and waterbody characteristics. Selected water quality parameters discussed in this study were pH, DO, BOD, COD, SS, T-P, T-Coli and F-Coli. The excess ratios of the water quality parameters were used to discriminate water bodies that did not meet water quality standards. The excess levels were used to classify the degradation of water quality. The excess ratios and the excess levels to the water quality criteria of the medium influence areas were used for each stream zone. The results indicate that the excess ratios and the excess levels are varied on the stream zone in each river basin. Three parameters, pH, DO and SS, met water quality standards in all stream zones. The other five parameters indicated very high excess ratios in most waterbodies, and especially T-P and T-Coli revealed to be very high excess levels in some waterbodies. These parameters could be considered as major target indicators for the management of TMDLs.

Behavior of one way reinforced concrete slabs with styropor blocks

  • Al-Azzawi, Adel A.;Abbas, J;Al-Asdi, Al-Asdi
    • Advances in concrete construction
    • /
    • v.5 no.5
    • /
    • pp.451-468
    • /
    • 2017
  • The problem of reducing the self-weight of reinforced concrete structures is very important issue. There are two approaches which may be used to reduced member weight. The first is tackled through reducing the cross sectional area by using voids and the second through using light weight materials. Reducing the weight of slabs is very important as it constitutes the effective portion of dead loads in the structural building. Eleven slab specimens was casted in this research. The slabs are made one way though using two simple supports. The tested specimens comprised three reference solid slabs and eight styropor block slabs having (23% and 29%) reduction in weight. The voids in slabs were made using styropor at the ineffective concrete zones in resisting the tensile stresses. All slab specimens have the dimensions ($1100{\times}600{\times}120mm$) except one solid specimens has depth 85 mm (to give reduction in weight of 29% which is equal to the styropor block slab reduction). Two loading positions or cases (A and B) (as two-line monotonic loads) with shear span to effective depth ratio of (a/d=3, 2) respectively, were used to trace the structural behavior of styropor block slab. The best results are obtained for styropor block slab strengthened by minimum shear reinforcement with weight reduction of (29%). The increase in the strength capacity was (8.6% and 5.7%) compared to the solid slabs under loading cases A and B respectively. Despite the appearance of cracks in styropor block slab with loads lesser than those in the solid slab, the development and width of cracks in styropor block slab is significantly restricted as a result of presence a mesh of reinforcement in upper concrete portion.