• Title/Summary/Keyword: Light field display

Search Result 190, Processing Time 0.032 seconds

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

Simulations of Electrical Characteristics of Multi-layer Organic Light Emitting Diode Devices with doped Emitting Layer (도핑된 발광층을 갖는 다층 유기발광다이오드 소자의 전기적 특성 해석)

  • Oh, Tae-Sik;Lee, Young-Gu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.827-834
    • /
    • 2010
  • We have performed numerical simulations of the electrical characteristics for multi-layer organic light emitting diode devices with doped emitting layer using a commercial simulation program. In this paper, the basic structure consists of the ITO/NPB/$Alq_3$:C545T(%)/$Alq_3$/LiF/Al, four devices that were composed of $Alq_3$ as the host and C545T as the green dopant with different concentration, were studied. As the result, the variations of the doping concentration rate of C545T have a effect on the voltage-current density characteristics. The voltage-current characteristics are quite consistent with the results which were experimentally determined in a previous reference paper. In addition, the voltage-luminance characteristics were greatly improved, and the luminous efficiency was improved three times. In order to analyze these driving mechanism, we have investigated the distribution of electric field, charge density of the carriers, and recombination rates in the inner of the OLED devices.

The Aesthetic Transformation of Shadow Images and the Extended Imagination (그림자 이미지의 미학적 변용과 확장된 상상력 :디지털 실루엣 애니메이션과 최근 미디어 아트의 흐름을 중심으로)

  • Kim, Young-Ok
    • Cartoon and Animation Studies
    • /
    • s.49
    • /
    • pp.651-676
    • /
    • 2017
  • Shadow images are a representative medium and means of expression for the imagination that exists between consciousness and unconsciousness for thousands of years. Wherever light exists, people create play with their own shadows without special skills, and have made a fantasy at once. Shadow images have long been used as subjects and materials of literacy, art, philosophy, and popular culture. Especially in the field of art, people have been experimenting with visual stimulation through the uniqueness of simple silhouettes images. In the field of animation, it became to be recognized as a form of non - mainstream areas that are difficult to make. However, shadow images have been used more actively in the field of digital arts and media art. In this Environment with technologies, Various formative imaginations are being expressed more with shadow images in a new dimension. This study is to introduce and analyze these trends, the aesthetic transformations and extended methods focusing on digital silhouette animation and recent media art works using shadow images. Screen-based silhouette animation combines digital technology and new approaches that have escaped conventional methods have removed most of the elements that have been considered limitations, and these factors have become a matter of choice for the directors. Especially, in the display environment using various light sources, projection, and camera technology, shadow images were expressed with multiple-layered virtual spaces, and it becomes possible to imagine a new extended imagination. Through the computer vision, it became possible to find new gaze and spatial images and use it more flexibly. These changes have given new possibility to the use shadow images in a different way.

A Study on the Urban Public Design which Introduced the Concept of Hypermedia (도시 공공디자인에서 하이퍼미디어에 관한 연구)

  • Yang, Jin-A;Lee, Young-Soo
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.1
    • /
    • pp.231-238
    • /
    • 2013
  • As the technical medium evolves, the method of accepting information is changing. The technical medium also appears in various ways through the combination with art. This study aims to conduct research on how hypermedia, appearing from this, will reveal itself in the urban public design in terms of its expression mode. First, this study looks at the characteristics for expression representation of hypermedia art through theoretical considerations on the hypermedia. Second, this study identifies how hypermedia art is introduced in the urban public design through art cases. Third, this study reveals the characteristics depending on the expression mode of hypermedia art shown in the urban public design based on the analyzed cases. As a result, first, hypermedia appeared in various image lighting expression modes that use 'light' in the urban public design and interacted with the public. Second, hypermedia reacted to 'motion' and was the expression mode of using bodies in the urban public design and using peripheral devices and external environment and characterized by having complex patterns of multi-layered structure through multi-media. It also applied sight, hearing, and touch partially or integratedly to attract synesthesia from the public and checked mutual interaction rapidly in an improvised way. Third, such a complex digital technology was the network expression mode beyond space and time by medium of urban public design and characterized by the new experience of virtual space expansion through the world wide network and the communication mode of participation. With such a role change of media and combination with art, hypermedia has been achieving varied extended representations. It is considered to change our monotonous urban environment, restore our relationship with the public, and open a new field of communication. Accordingly, the significance of this study can be identified through how it aimed to display the expression method of hypermedia which caused its extension in the field of urban public design as well as through the derivation of relevant characteristics.

Optical system design for stereoscopic video-recorder (비디오 입체영상녹화를 위한 광학계 설계)

  • Hong, Kyung-Hee
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.506-509
    • /
    • 2002
  • An optical system for a stereoscopic video recorder is designed with the field of view 42$^{\circ}$ and effective diameter 22 mm. We can use it by attaching it to the front lens of any video camera or camcorder to record a stereoscopic scene. This system is a double Kepler type afocal system to make the image erect and a bi-ocular type to record and display the stereoscopic scene. The optical tube length is folded with several flat mirrors and a beam splitter to be compact. This optical system is composed of 4 groups of lenses and each group serves as a relay lens for minimizing the vignetting effect. Whole field stereoscopic scenes may be captured by perpendicularly polarized alternated recording with a chopper and two perpendicular polarizers, without any loss of light energy. The displayed images may be seen stereoscopically with polarized spectacles and are kinetic because of an afterimage effect.

The Characteristics of High Temperature Crystallized Poly-Si for Thin Film Transistor Application (박막트랜지스터 응용을 위한 고온 결정화된 다결정실리콘의 특성평가)

  • 김도영;심명석;서창기;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.5
    • /
    • pp.237-241
    • /
    • 2004
  • Amorphous silicon (a-Si) films are used in a broad range of solar cell, flat panel display, and sensor. Because of the greater ease of deposition and lower processing temperature, thin films are widely used for thin film transistors (TFTs). However, they have lower stability under the exposure of visible light and because of their low field effect mobility ($\mu$$_{FE}$ ) , less than 1 c $m^2$/Vs, they require a driving IC in the external circuits. On the other hand, polycrystalline silicon (poly-Si) thin films have superiority in $\mu$$_{FE}$ and optical stability in comparison to a-Si film. Many researches have been done to obtain high performance poly-Si because conventional methods such as excimer laser annealing, solid phase crystallization and metal induced crystallization have several difficulties to crystallize. In this paper, a new crystallization process using a molybdenum substrate has been proposed. As we use a flexible substrate, high temperature treatment and roll-to-roll process are possible. We have used a high temperature process above 75$0^{\circ}C$ to obtain poly-Si films on molybdenum substrates by a rapid thermal annealing (RTA) of the amorphous silicon (a-Si) layers. The properties of high temperature crystallized poly-Si studied, and poly-Si has been used for the fabrication of TFT. By this method, we are able to achieve high crystal volume fraction as well as high field effect mobility.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

High Performance Flexible Inorganic Electronic Systems

  • Park, Gwi-Il;Lee, Geon-Jae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.115-116
    • /
    • 2012
  • The demand for flexible electronic systems such as wearable computers, E-paper, and flexible displays has increased due to their advantages of excellent portability, conformal contact with curved surfaces, light weight, and human friendly interfaces over present rigid electronic systems. This seminar introduces three recent progresses that can extend the application of high performance flexible inorganic electronics. The first part of this seminar will introduce a RRAM with a one transistor-one memristor (1T-1M) arrays on flexible substrates. Flexible memory is an essential part of electronics for data processing, storage, and radio frequency (RF) communication and thus a key element to realize such flexible electronic systems. Although several emerging memory technologies, including resistive switching memory, have been proposed, the cell-to-cell interference issue has to be overcome for flexible and high performance nonvolatile memory applications. The cell-to-cell interference between neighbouring memory cells occurs due to leakage current paths through adjacent low resistance state cells and induces not only unnecessary power consumption but also a misreading problem, a fatal obstacle in memory operation. To fabricate a fully functional flexible memory and prevent these unwanted effects, we integrated high performance flexible single crystal silicon transistors with an amorphous titanium oxide (a-TiO2) based memristor to control the logic state of memory. The $8{\times}8$ NOR type 1T-1M RRAM demonstrated the first random access memory operation on flexible substrates by controlling each memory unit cell independently. The second part of the seminar will discuss the flexible GaN LED on LCP substrates for implantable biosensor. Inorganic III-V light emitting diodes (LEDs) have superior characteristics, such as long-term stability, high efficiency, and strong brightness compared to conventional incandescent lamps and OLED. However, due to the brittle property of bulk inorganic semiconductor materials, III-V LED limits its applications in the field of high performance flexible electronics. This seminar introduces the first flexible and implantable GaN LED on plastic substrates that is transferred from bulk GaN on Si substrates. The superb properties of the flexible GaN thin film in terms of its wide band gap and high efficiency enable the dramatic extension of not only consumer electronic applications but also the biosensing scale. The flexible white LEDs are demonstrated for the feasibility of using a white light source for future flexible BLU devices. Finally a water-resist and a biocompatible PTFE-coated flexible LED biosensor can detect PSA at a detection limit of 1 ng/mL. These results show that the nitride-based flexible LED can be used as the future flexible display technology and a type of implantable LED biosensor for a therapy tool. The final part of this seminar will introduce a highly efficient and printable BaTiO3 thin film nanogenerator on plastic substrates. Energy harvesting technologies converting external biomechanical energy sources (such as heart beat, blood flow, muscle stretching and animal movements) into electrical energy is recently a highly demanding issue in the materials science community. Herein, we describe procedure suitable for generating and printing a lead-free microstructured BaTiO3 thin film nanogenerator on plastic substrates to overcome limitations appeared in conventional flexible ferroelectric devices. Flexible BaTiO3 thin film nanogenerator was fabricated and the piezoelectric properties and mechanically stability of ferroelectric devices were characterized. From the results, we demonstrate the highly efficient and stable performance of BaTiO3 thin film nanogenerator.

  • PDF

The 3D Depth Extraction Method by Edge Information Analysis in Extended Depth of Focus Algorithm (확장된 피사계 심도 알고리즘에서 엣지 정보 분석에 의한 3차원 깊이 정보 추출 방법)

  • Kang, Sunwoo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-146
    • /
    • 2016
  • Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.