• Title/Summary/Keyword: Light fiber

Search Result 1,185, Processing Time 0.035 seconds

The acceleration of microscopic particles in the near field diffracted from the fiber end (광섬유의 Near field를 이용한 미세입자의 가속에 관한 연구)

  • Kang, Yong-Hoon;Lee, Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.359-361
    • /
    • 1993
  • The force exerted on particles when the momentum of light is changed at the boundary is used in accelerating particles in the fluid. So far, particles are accelerated by the gaussian beam focused by lenses or microscopic objectives. In this paper, particles arc moved by the light diffracted from the fiber end. And we proposed the possibility of particle acceleration using the fiber end.

  • PDF

Pump Light Power of Wideband Optical Phase Conjugator using HNL-DSF in WDM Systems with MSSI (MSSI 기법을 채택한 WDM 시스템에서 HNL-DSF를 이용한 광대역 광 위상 공액기의 펌프 광 전력)

  • Lee Seong real;Cho Sung eun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.168-177
    • /
    • 2005
  • In this paper, we numerically investigated the optimum pump light power resulting best compensation of pulse distortion due to both chromatic dispersion and self phase modulation (SPM) in long-haul 3×40 Gbps wavelength division multiplexing (WDM) systems. We used mid-span spectral inversion (MSSI) method with path-averaged intensity approximation (PAIA) as compensation approach, which have highly nonlinear dispersion shifted fiber (HNL-DSF) as nonlinear medium of optical phase conjugator (OPC) in the mid-way of total transmission line. We confirmed that HNL-DSF is an useful nonlinear medium in OPC for wideband WDM transmission, and in order to achieve the excellent compensation the pump light power is selected to equal the conjugated light power into the latter half fiber section with the input light power of WDM channel depending on total transmission length. Also we confirmed that compensation degree of WDM channel with small conversion efficiency is improved by using pump light power increasing power conversion ratio upper than 1.

Manufacturing Regenerated Woody Dyed Fiber from Waste MDF Using Natural Dyes

  • JU, Seon-Gyeong;ROH, JeongKwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.154-165
    • /
    • 2020
  • To assign the functionality of the regenerated fiber from waste MDF(wMDF) made of pitch pine, we examined the dyeing characteristics of natural dyes, sappan wood as a polychromatic natural red series, monochromatic gardenia as a yellow series, and indigo blue series. For nonemordanting dye, the colors of regenerated fiber dyed by sappan wood and gardenia were reddish yellow (YR) and yellow (Y) series, respectively, and dyeing conditions were appropriate a 30 ~ 50 g/L of dyeing materials at 60 ℃ for 60minutes of dyeing time. We obtained regenerated woody dyed fibers (Re-WDF), YR to the red (R) series by premordanting with Al and Cu mordant for sappan wood and the purplish red (RP) series by Fe premordanting. In the case of gardenia, only Y series colors were developed in nonemordanting dye or all three mordants. Indigo dye produced Re-WDF with greenish yellow (GY) tone at 1%, green (G) tone at 3%, and blue (B) tone at 5% concentration or more. Re-WDF with indigo showed the best light fastness followed by sappan wood and gardenia. In particular, the light fastness of Re-WDF with gardenia was very poor. The light fastness was somewhat improved by premordanting(Fe>Cu>Al) both sappan wood and gardenia dyes.

Test study on the impact resistance of steel fiber reinforced full light-weight concrete beams

  • Yang, Yanmin;Wang, Yunke;Chen, Yu;Zhang, Binlin
    • Earthquakes and Structures
    • /
    • v.17 no.6
    • /
    • pp.567-575
    • /
    • 2019
  • In order to investigate the dynamic impact resistance of steel fiber reinforced full light-weight concretes, we implemented drop weight impact test on a total of 6 reinforced beams with 0, 1 and 2%, steel fiber volume fraction. The purpose of this test was to determine the failure modes of beams under different impact energies. Then, we compared and analyzed the time-history curves of impact force, midspan displacement and reinforcement strain. The obtained results indicated that the deformations of samples and their steel fibers were proportional to impact energy, impact force, and impact time. Within reasonable ranges of parameter values, the effects of impact size and impact time were similar for all volumetric contents of steel fibers, but they significantly affected the crack propagation mechanism and damage characteristics of samples. Increase of the volumetric contents of steel fibers not only effectively reduced the midspan displacement and reinforcement strain of concrete samples, but also inhibited crack initiation and propagation such that cracks were concentrated in the midspan areas of beams and the frequency of cracks at supports was reduced. As a result, the tensile strength and impact resistance of full light-weight concrete beams were significantly improved.

Relationships between Myosin Light Chain Isoforms, Muscle Fiber Characteristics, and Meat Quality Traits in Porcine Longissimus Muscle

  • Choi, Young-Min;Ryu, Youn-Chul;Lee, Sang-Hoon;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.639-644
    • /
    • 2005
  • The aim of this study was to investigate the effect of the myosin light chain (MLC) isoforms on the muscle fiber characteristics and meat quality traits in porcine longissimus muscle. Pale, soft, exudative (PSE) samples had a lower content of essential light chain (ELC) 1S isoforms and a higher proportion of the fiber type IIB than the reddish-pink, firm, non-exudative (RFN) samples. These compositions suggest that the PSE pork has a higher glycolytic and a lower oxidative capacity than the RFN pork. Therefore, these characteristics of PSE pork might affect the metabolic rate and meat quality traits, including protein solubility. In addition, the indicator traits of the postmortem metabolic rate were related to the ELC 1F/3F ratio ($pH_{45\;min}$: r = -0.43, P < 0.001; R-value: r = 0.53, P < 0.001). These results suggest that the MLC isoform composition can affect the postmortem metabolic rate and meat quality traits.

Ultraviolet Light Sensor Based on an Azobenzene-polymer-capped Optical-fiber End

  • Cho, Hee-Taek;Seo, Gyeong-Seo;Lim, Ok-Rak;Shin, Woojin;Jang, Hee-Jin;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.303-307
    • /
    • 2018
  • We propose a simple ultraviolet (UV) sensor consisting of a conventional single-mode optical fiber capped with an azobenzene-moiety-containing polymer. The UV light changes the dimensions of the azobenzene polymer, as well as the refractive index of the material. Incident light with a wavelength of 1550 nm was reflected at the fiber/polymer and polymer/air interfaces, and interference of the reflected beams resulted in spectral interference that shifted the wavelength by 0.78 nm at a UV input power of $2.5mW/cm^2$. The UV sensor's response to wavelength is nonlinear and stable. The response speed of the sensor is limited by detection noise, which can be improved by modifying the insertion loss of the UV sensor and the signal-to-noise ratio of the detection system. The proposed compact UV sensor is easy to fabricate, is not susceptible to electromagnetic interference, and only reacts to UV light.

Development of the Protocol of the High-Visibility Smart Safety Vest Applying Optical Fiber and Energy Harvesting (광섬유와 압전 에너지 하베스팅을 적용한 고시인성 스마트 안전조끼의 개발)

  • Park, Soon-Ja;Jung, Jun-Young;Moon, Min-Jung
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.25-38
    • /
    • 2021
  • The aim of this study is to protect workers and pedestrians from accidents at night or bad weather by attaching optical fiber to existing safety clothing that is made only with fluorescent fabrics and retroreflective materials. A safety vest was designed and manufactured by applying optical fiber, and energy-harvesting technology was developed. The safety vest was designed to emit light using the automatic flashing of optical fibers attached to the film, and an energy harvester was manufactured and attached to drive the light emission of the optical fiber more continuously. As a result, first, the vest wearer' body was recognized from a distance through the optical fiber and retroreflection, which helped prevent accidents. Thus, this concept helps in saving lives by preventing accidents during night-time work on the roadside or activities of rescue crew and sports activities, or by quickly finding the point of an accident with a signal that changes the optical fiber light emission. Second, to use the wasted energy, a piezoelectric-element power generation system was developed and the piezoelectric-harvesting device was mounted. Potentially, energy was efficiently produced by activating the effective charging amount of the battery part and charging it auxiliary. In the existing safety vest, detecting the person wearing the vest is almost impossible in the absence of ambient light. However, in this study, the wearer could be found within 100 m by the light emission from the safety vest even with no ambient light. Therefore, in this study, we will help in preventing and reducing accidents by developing smart safety clothing using optical fiber and energy harvester attached to save lives.

Coherent fiber-optic intrusion sensor for long perimeters monitoring

  • Choi Kyoo Nam
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.876-879
    • /
    • 2004
  • The buried fiber optic cable as a distributed intrusion sensor for detecting and locating intruders along the long perimeters is proposed. Phase changes resulting from either the pressure of the intruder on the ground immediately above the buried fiber or from seismic disturbances in the vicinity are sensed by a phase-sensitive optical time-domain reflectometer. Light pulses from a Er:fiber cw laser with a narrow, <3kHz-range, spectral width and a frequency drift of < 1 MHz/min are injected into one end of the fiber, and the backscattered light from the fiber is monitored with a photodetector. Results of preliminary studies, measurement of phase changes produced by pressure and seismic disturbances in buried fiber optic cables and simulation of ${\varphi}-OTDR$ response over long fiber paths, to establish the feasibility of the concept are described. The field experiments indicate adequate phase changes, more than 1t-rad, are produced by intruders on foot and vehicle for burial depths in the 0.2 m to 1 m range in sand, clay and fine gravel soils. The simulations predict a range of 10 km with 35 m range resolution and 30 km with 90 m range resolution. This technology could in a cost-effective manner provide enhanced perimeter security.

  • PDF

Vector Passive Harmonic Mode-locking Fiber Laser Based on Topological Insulator Bi2Se3 Interacting with Fiber Taper

  • Li, Jian Ping
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.135-139
    • /
    • 2016
  • I propose a vector passive harmonic mode-locked fiber laser based on topological insulator Bi2Se3 interacting with a fiber taper with a diameter of 7 μm. The particles of topological insulator are deposited uniformly onto the fiber taper with light pressure effect. By incorporating the fabricated saturable absorber into an Er-doped fiber laser cavity, stable mode-locked fiber is obtained. Due to the intense evanescent field of the fiber taper, strong confinement of light enhances the nonlinearity of the laser cavity, and passive harmonic mode-locking is performed. I observe a maximum harmonic mode-locking of 356th, corresponding to a frequency of 3.57 GHz. The pulse duration is 824 fs, and the full width at half maximum of the spectrum is about 8.2 nm. The polarization dependent loss of the saturable absorber is ~ 2.5 dB in the wavelength range of the C band. As the cavity contains no other polarization dependent device, the mode-locked laser is functioning in the vector state. The harmonic order vs pump power is investigated. To the best of our knowledge, this report is the highest frequency mode-locked fiber laser based on Bi2Se3. Experimental results indicate that the topological insulator Bi2Se3 functioning with a thin fiber taper is effective for vector harmonic mode-locking.

SALS Study on Transcrystallization and Fiber Orientation in Glass Fiber/Polypropylene Composites

  • Na, Kun;Park, Han-Soo;Won, Hong-Youn;Lee, Jong-Kwan;Lee, Kwang-Hee;Nam, Joo-Young;Jin, Byung-Suk
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.499-503
    • /
    • 2006
  • This report presents a new technical approach for evaluating the fiber orientation of composites using small-angle light scattering (SALS). Glass fiber (GF)/polypropylene (PP) composites with different fiber orientations were prepared by drawing compression-molded specimens. The drawn samples were remelted and then annealed at $150^{\circ}C$ in order to induce a crystalline structure on the fiber surface, and then underwent SALS analysis. The samples showed a combination of circular and streak patterns. The model calculations demonstrated that the number of nuclei on the fiber surface and the thickness of the transcrystalline layer affected the sharpness and intensity of the streak pattern. In addition, the azimuthal angle of the streak pattern was found to be dependent on the direction of the transcrystalline layer, which correlated with the fiber direction. This correlation suggests that the fiber orientation in the composites can be easily evaluated using SALS.