DOI QR코드

DOI QR Code

Development of the Protocol of the High-Visibility Smart Safety Vest Applying Optical Fiber and Energy Harvesting

광섬유와 압전 에너지 하베스팅을 적용한 고시인성 스마트 안전조끼의 개발

  • Received : 2020.12.22
  • Accepted : 2021.04.21
  • Published : 2021.06.30

Abstract

The aim of this study is to protect workers and pedestrians from accidents at night or bad weather by attaching optical fiber to existing safety clothing that is made only with fluorescent fabrics and retroreflective materials. A safety vest was designed and manufactured by applying optical fiber, and energy-harvesting technology was developed. The safety vest was designed to emit light using the automatic flashing of optical fibers attached to the film, and an energy harvester was manufactured and attached to drive the light emission of the optical fiber more continuously. As a result, first, the vest wearer' body was recognized from a distance through the optical fiber and retroreflection, which helped prevent accidents. Thus, this concept helps in saving lives by preventing accidents during night-time work on the roadside or activities of rescue crew and sports activities, or by quickly finding the point of an accident with a signal that changes the optical fiber light emission. Second, to use the wasted energy, a piezoelectric-element power generation system was developed and the piezoelectric-harvesting device was mounted. Potentially, energy was efficiently produced by activating the effective charging amount of the battery part and charging it auxiliary. In the existing safety vest, detecting the person wearing the vest is almost impossible in the absence of ambient light. However, in this study, the wearer could be found within 100 m by the light emission from the safety vest even with no ambient light. Therefore, in this study, we will help in preventing and reducing accidents by developing smart safety clothing using optical fiber and energy harvester attached to save lives.

본 연구의 목적은 형광직물과 재귀반사 소재만으로 제작, 보급되고 있는 현 안전의복에, 광섬유 적용으로 시인성을 높여 야간이나 기상악화 시 안전사고로부터 작업자나 보행자를 보호하는데 있다. 이를 위하여 LED를 촉매로 한 광섬유와, 에너지 하베스팅 기술을 적용하여 설계·제작한 안전조끼를 개발하였다. 안전조끼는 필름에 일체화된 자동 점멸 광섬유에 의해 빛을 방출하도록 설계되었고 이 조끼를 착용한 작업자의 움직임으로, 버려지는 에너지를 수확하여 광섬유의 발광을 더 지속적으로 구동시키기 위해 에너지 하베스터를 제작하여 부착하였다. 그 결과, 첫째로 조끼 착용자의 신체는 광섬유(optical fiber)와 재귀반사 테이프를 통해 멀리서 인식 가능하도록 시인성이 높아져 사고예방에 도움이 된다. 즉 야간에 실시하는 도로변이나 고지대에서의 작업, 구조대원의 활동, 스포츠 활동 시 사고를 예방하거나, 비상상황이 발생할 경우 광섬유 발광을 변화시키는 신호로 사고 지점을 빨리 발견할 수 있어 인명구조에도 도움이 될 것이다. 둘째, 생활 속 버려지는 에너지를 활용하기 위하여 압전소자 발전 시스템을 개발하여 압전 에너지 하베스팅 장치를 탑재한 결과, 배터리부의 유효 충전량을 활성화하고 보조 충전을 함으로써 에너지를 소량일지라도 효율적으로 생산할 수 있었다. 동시에 안전조끼에 내장하여 제작함으로써 탈착이 용이하도록 하여 활용도를 높였다. 기존 안전 조끼의 경우 야간에 주변 조명이 없을 때는 조끼를 착용한 사람을 인식하는 것이 거의 불가능하지만, 본 연구에서는 안전조끼의 빛 신호로 주변 조명이 없을 때에도 100m 이내에서 착용자를 식별할 수 있었다. 또한 광섬유적용 안전조끼는 측면에서의 시인성 향상뿐만 아니라 가볍고 (물)세탁이 가능하여 실용적 측면에서 현존하는 LED적용 안전의류보다 우수하다. 그러므로 본 연구에서 개발한, 광섬유와 에너지 하베스터를 장착한 안전조끼는 실용도가 높고 안전사고 발생 예방과 감소, 나아가 인명구조에 이바지할 것으로 추정된다.

Keywords

Acknowledgement

이 논문은 2019년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1I1A1A01041013).

References

  1. Cho, H. S., Park, S. H., Kang, D. H., Lee, K. H., Kang, S. J., Han, B. R., Oh, J. H., Lee, H. D., Lee, J. H., & Lee, J. H. (2015). Performance evaluation of fabric sensors movement-monitoring smart clothing based on the experiment on a dummy. Science of Emotion & Sensibility, 18(4), 25-34, DOI: 10.14695/KJSOS.2015.18.4.25
  2. Cho, H. S., Yang, J. H., Lee, K. H., Lee, J. H., Park, S. Y., Choi, H. I., Jeon, H. S., & Lee, J. H. (2018). Development of wearable sensing and feedback product design for movement monitoring. Science of Emotion & Sensibility, 21(3), 165-176. DOI: 10.14695/KJSOS.2018.21.3.165
  3. Choi, M. Y., Choi, D. H., Jin, M. J., Kim, I. S., Kim, S. H., Kim, J. Y., Choi, S. Y., Lee, J. M., & Kim, S. W. (2009). Mechanically powered transparent flexible charge generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials, 21(21), 2185-2189. https://doi.org/10.1002/adma.200803605
  4. Choi, Y. M., Lee, M. G., & Jeon, Y. H. (2017). Wearable bio-mechanical energy harvesting technologyes. Energies, 2017, 10, 1483. DOI: 10.3390/en10101483. Retrieved from http://cache.yahoofs.jp/search/cache
  5. International Organization for Standardization. (2013). ISO 20471: 2013(en) High visibility clothing - Test methods and requirement. Retrieved form https://www.iso.org/obp/ui/#iso:std:iso:20471:ed-1:v2:en.
  6. International Organization for Standardization. (2013). ISO 20471: 2013 High visibility clothing -Test methods and requirements. Retrieved from https://www.iso.org/standard/42816.htm.
  7. Japanese Industrial Standards. (2015). JIS T 8127: 2015 High-visibility warning clothing. Retrieved from http://kikakurui.com/t8/T8127-2015-01.html.
  8. Jung, S. Y., Kim, Y. S., Kim, S. W., & Kang, J. Y. (2012). Development of new technology for patchtype piezoelectric energy harvesting devices using eco-friendly materials. Advanced Materials, 24(45). Retrieved from http://news.khan.co.kr/kh_news/khan_art_view.html.etns.
  9. Juris Blums, Ilgvars Gornevs, Galina Terlecka, Vilnis Jurkans, & Ausma Vilumsone. (2018). Wearable human motion and heat energy harvesting system with power management. Chapter 3. DOI: 10.5772/intechopen.74417.
  10. Kim, H. J., Kim, J. H., Jun, K. W., Seung W. C., Kwon, O. H., Park, J. Y., Kim, S. W., & Oh, I. K. (2016). Silk nanofiber-networked bio-triboelectric generator: Silk Bio-TEG. Advanced Materials, 2016. 1502329.
  11. Kim, S. G. (2012). First development of eco-friendly patch-type piezoelectric energy harvesting device. Advanced Institute of Convergence Technology. Retrieved from https://www.etnews.com/2012.11.27.
  12. Kim, S. W., & Lee, J. H. (2014). The latest technology and research of energy harvester. [Electronic Materials]. Energy Trend, 20-27.
  13. Korean Agency for Technology and Standards. (2016). KS K ISO 20471 High visibility clothing - Test methods and requirements. Korean Standards & Certifications. Retrieved from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=919&topMenuId=502&upperMenuId=503&ksNo=KSKISO20471&tmprKsNo=KS_K_NEW_2015_1243&reformNo=00.
  14. Lee, J. H., & Kim S. W. (2014). Energy harvester's technology and research trends. Bulletin of the Korean Institute of Electrical and Electronic Material Engineers, 27(3), 26-37.
  15. Leonov, V. (2015). Chapter 2. Energy Harvesting for Self-Powered Wearable Devices. Bonfiglio, A., and Rossi D. (eds). (2011). Wearable Monitoring Systems. DOI: 10.1007/978-1-4419-7384-9_2, Springer Business Media, LLC. from https://www.researchgate.net/publication/267816893. All content following this page was uploaded by V. Leonov on 23 January 2015.
  16. Min, C. H. (2014). Design and fabrication of electromagnetic energy harvester. (Unpublished doctoral dissertation). Catholic University, Gyunggido Korea.
  17. Momoi, N. (2018). Support the rising sports market. Toray Management Institute, Fiber Trend, 3/4 Monthly, 59-62.
  18. Newcastle City Council. (2007). Guideline on the safety of children's clothing. Retrieved from https://www.newcastle.gov.uk/business/trading-standard/product-safety/guidance on the safety of children's clothing.
  19. Nonaka, T. (2019). Toray group's global environment business immersion and new growth strategy. Toray Management Institute, Fiber Trend, 5/6 Monthly, 4-45.
  20. Park, B. I. (2016). A study the application of plastic arts and industrial design using energy harvesting device in next generation -focused on a case study of the novel solar cells and piezoelectric device-. Korea Society of Basic Design and Art, 17(3), 161-173.
  21. Park, S. H., Cho, H. S., Yang J. H., Yun, D. Y., Yun, K. S., & Lee, J. H. (2013). An exploration on the piezoelectric energy harvesting clothes based on the motion analysis of the extremities. Science of Emotion & Sensibility, 16(1), 85-94, 2013. DOI: 10.14695/KJSOS.2013.16.1.85.
  22. Park, S. J, Kim, S. W., & Won, C. H. (2019). Electrical and electronic engineering design and making of high-visibility safety vest using retrorereflective film and LED. In Proceeding of 2019 Spring Conference of Journal of Korean Society of Clothing and Textiles, 140-141.
  23. Park, S. J., & Kim S. W. (2020). Designing and fabricating of the high-visibility smart safety clothing. Science of Emotion & Sensibility, 23(4), 105-116, 2020. DOI: 10.14695/KJSOS.2020.16.23.4.3.
  24. Park, S. J., Kim S. W., & Won, C. H. (2020). Electrical and electronic engineering design and making of the high-visibility suspender-type safety belt using retroreflective films and LEDs. International Congress on Clothing Textile(ICCT), In Proceeding of 2020 Spring Conference Proceeding, 131-133, Korea.
  25. Park, S. J., Park, S. H., & Lee, J. H. (2009). A study on the modular design of smart phontonic sports clothing based on optical fiber technology, Journal of the Science of Emotion & Sensibility, 12(4), 393-402.
  26. Park, S. J., & Joung, J. Y. (2020). Fabricating of the system and the prototype of smart safety clothing applying energy harvesting. In Proceeding of 2020 Fall Conference of Korean Society for Emotion & Sensibility.
  27. Rebeccah P. F. (2016). Smart textiles for designer. Laurence King Publishing Ltd., London, UK.
  28. Self, L. (2015). Intelligent fiber sensor technology with green energy harvesting function. Retrieved from https://blog.naver.com/in4maker/220415846568).
  29. Suh, S. E., & Roh, J. S. (2017). Development status of energy harvesting fashion products. Journal of Fashion Design, 17(4), 19-38. DOI: 10.18652/2017.17.4.2.
  30. Suh Y. D., Kwon, J. H., & Ko, S. H. (2014). Trend on nanomaterials based on smart wear. Fashion and Technology, 11, 30-35.
  31. Teijin. (2015). Your partner for advanced carbon fiber solutions. https://teijin.com/news/2015/ebd 150724_07.html.
  32. Yoon, B, G. (2016). Mechanical energy harvesting based on piezoelectricity and tribolectricity. (Unpublished master' thesis). Inha University. Incheon Korea.
  33. Yoon, J. A., Oh, Y. J., Oh, H. W., & Lee, Y. H. (2018). Development of energy-harvesting based safety apparel for night workers. The Research Journal of the Costume Culture, 26(4), 503-518. DOI: 1029049/rjcc2018.26.4. https://doi.org/10.29049/rjcc2018.26.4