• 제목/요약/키워드: Light emitting diode (LED) irradiation

검색결과 65건 처리시간 0.027초

저장 중 발광다이오드 광 조사가 타이로시네이스 활성에 미치는 영향 (Effect of Light Emitting Diode Irradiation on Tyrosinase Activity during Storage)

  • 정효연;김정선;노봉수
    • 한국식품과학회지
    • /
    • 제47권6호
    • /
    • pp.785-788
    • /
    • 2015
  • 식품 저장 중 효소적 갈변을 일으키는 타이로시네이스의 활성을 저해시킬 수 있는 LED의 파장을 구명하기 위하여 파란색, 초록색, 빨간색 LED와 형광등을 이용하여 타이로시네이스에 7일동안 조사하였다. 또한 강도에 따른 타이로시네이스의 활성을 조사하기 위하여 파란색, 초록색, 빨간색 LED를 선택하여 빛의 강도를 3단계로 구분하여 사용하였다. 파장에 따른 타이로시네이스의 활성 저해율은 형광등에서 가장 컸으며 그 다음으로 파란색 LED에서 높은 저해율을 보였다. 빨간색 LED에서는 대조구와 유사한 저해율을 보였으며 초록색 LED에서 저해율이 가장 낮았다. 상대적 빛의 강도에 따른 타이로시네이스 활성은 초록색과 빨간색 LED 조사 시 효소활성의 변화가 크지 않았고, 반면 파란색 LED에서 강도가 증가할수록 큰 저해효과를 보였다. 이러한 결과를 토대로 볼 때 여러 가지 파장의 LED 중 고강도의 파란색 LED에서 타이로시네이스에 의한 식품의 갈변을 최소화 할 수 있을 것으로 판단되며 이는 갈변 억제를 유도함으로써 과일 및 채소의 저장 중 품질을 향상시킬 수 있을 것이다.

Effect of 630 nm Light Emitting Diode (LED) Irradiation on Wound Healing in Streptozotocin-Induced Diabetic Rats

  • 제갈승주
    • 대한의생명과학회지
    • /
    • 제16권4호
    • /
    • pp.365-376
    • /
    • 2010
  • The purpose of this study was to clarify the effect of light emitting diode (LED) irradiation on healing of impaired wound and alteration of mast cells in experimental diabetic rats. Twenty-four male Sprague-Dawley rats were divided into four groups: excision (Ex), excision-LED irradiation (Ex-LED), diabetes + excision (DM) and diabetes + excision + LED irradiation (DM-LED). Diabetes was induced in rats by streptozotocin (STZ) injection (70 mg/kg, single dose) and 6 mm punch excision wounds were created on the back after shaving hair. The LED-irradiated rats were treated to a daily dose of $5\;J/cm^2$ LED (630 nm) light for 11 days after surgery, and were killed at day 1, 3, 7 and 11. The lesion and adjacent skin tissues were excised, fixed with 10% buffered formalin and embedded with paraffin. For evaluation of wound healing, hematoxylin-eosin (HE) and Masson trichrome staining were performed. Mast cells (MCs) were stained with toluidine blue (pH 0.5) and quantified using a computerized image analysis system. The proliferation activity of keratinocyte in skin tissues was analyzed on sections immunostained with proliferative cell nuclear antigen (PCNA). The results showed that wound healing rate, collagen density and neo-epidermis length, number of PCNA-positive cells, fibroblasts and mast cells were significantly higher in the LED-irradiated rats than in the DM and Ex rats throughout the periods of experiment. Exceptionally, the number of MCs was significantly lower at day 11 compared with day 7 after surgery in the all groups. These findings suggest that the LED irradiation may promote the tissue repair process by accelerating keratinocyte and fibroblast proliferation and collagen production in normal rats as well as in diabetic rats, and MCs may play an important role at an early stage of skin wound healing in normal and diabetic rats.

적색, 초록, 청색 및 혼합광 LED 조사의 식중독균 저해 효과 (Inactivation of Bacterial Pathogens by Irradiation of Red, Green, Blue and Combined Light-Emitting Diode (LED))

  • 문진석;오명민;주우하;한남수
    • KSBB Journal
    • /
    • 제28권6호
    • /
    • pp.428-432
    • /
    • 2013
  • The antimicrobial properties of Light-Emitting Diode (LED) are an area of increasing interest. The aim of this study was to evaluate the bactericidal effects of blue (peak at 456 nm), green (peak at 518 nm), red (peak at 654 nm) and blue-green combined (blue 456 nm : green 558 nm = 69:31) LED irradiation to pathogenic bacteria. For this, LED equipment providing power density of $10mW/cm^2$ was installed and plates were exposed to 0.9 or $3.0mW/cm^2$ to irradiate bacteria with 3.2 to $259.2mW/cm^2$ of energy density. As a result, blue and combined LED have shown bactericidal effects on Escherichia coli KCTC 1467 and Listeria monocytogenes ATCC 19115 after irradiation of $3.0mW/cm^2$ for 2 and 4 hr, respectively. Staphylococcus aureus KCTC 1916 was inhibited at 518 nm green LED irradiation. However, red LED irradiation showed no inhibitory effect to the other tested strains. Light technology that utilizes the bactericidal properties of blue (at 456 nm) and blue-green(blue 456 nm : green 558 nm = 69:31) combined LED may have potential applications in the food industry sector.

630 nm Light Emitting Diode Irradiation Improves Dermal Wound Healing in Rats

  • Lee, Jae-Hyoung;Jekal, Seung-Joo;Kwon, Pil-Seung
    • The Journal of Korean Physical Therapy
    • /
    • 제27권3호
    • /
    • pp.140-146
    • /
    • 2015
  • Purpose: To determine the effects of 630 nm light emitting diode (LED) on full-thickness wound healing. Methods: Twelve male Sprague-Dawley rats were randomly divided into LED (n=6) and control group (n=6). Two $19.63mm^2$ wounds were created on the mid dorsum. LED group received a 630 nm LED irradiation with $3.67mW/cm^2$ for 30 minutes ($6.60J/cm^2$) for 7 days, while control group received sham LED irradiation. Epithelial gap, collagen density, ${\alpha}$-SMA fibroblast and PCNA keratinocyte were measured on histochemical and immunohistochemical staining using image analysis system. An independent t-test was conducted to compare the difference between groups. Results: The wound closure rate, collagen density, ${\alpha}$-SMA fibroblast number, epithelial gap and PCNA keratinocyte number have shown no significant difference between LED and control group at day 3 after the treatment. At day 7 after the treatment, the wound closure rate in LED group was increased when compared with control group (p<0.05). The collagen density (p<0.05) and ${\alpha}$-SMA immunoreactive fibroblast number (p<0.001) were increased when compared with control group at day 7. The epithelial gap in LED group was significantly shorten than control group at day 7 (p<0.01). The PCNA positive cell number in LED group was higher than control group at day 7 (p<0.01). Conclusion: 630 nm LED with $3.67mW/cm^2$, $6.60J/cm^2$ accelerate collagen deposition by stimulating fibroblasts, and enhance wound contraction by differentiating myofibroblasts in the dermis, and accelerate keratinocyte proliferation by facilitating DNA synthesis in the epidermis. It may promote the healing process in proliferation stage of wound healing.

LED 광원이 Rat의 피부 창상 치유에 미치는 영향 (The Effect of LED Light Irradiation on Skin Injury Cure of Rat)

  • 천민우;김성환;박용필;김태곤;유성미
    • 한국전기전자재료학회논문지
    • /
    • 제20권12호
    • /
    • pp.1087-1092
    • /
    • 2007
  • We developed the 4-channel Light Medical Therapy Apparatus for Skin Injury Cure using a high brightness LED. This equipment was fabricated using a micro-controller and a high brightness LED, and designed to enable us to control light irradiation time, intensity and reservation. In this paper, the designed device was used to find out how high brightness LED light affects the skin injury of SD-Rat(Sprague-Dawley Rat). In the experiment, $1\;cm^2$ wounds on the skin injury of SD-Rat(Sprague-Dawley Rat) were made. Light irradiation group and none light irradiation group divided, each group was irradiated one hour a day for 14 days. In result, compared with none light irradiation group, the lower incidence of inflammation and faster recovery was shown in light irradiation group.

LED조사가 인간 피부 각질세포의 증식에 미치는 융복합적인 영향 (Effect of LED Irradiation on Proliferation of Human Epidermal Keratinocyte for Convergence)

  • 박정숙;김미혜;이재혁
    • 디지털융복합연구
    • /
    • 제14권11호
    • /
    • pp.639-644
    • /
    • 2016
  • 본 연구의 목적은 발광 다이오드 (LED)을 인간 피부 각질 세포에 조사 시 콜라겐, 프로 콜라겐의 증식 발현을 조사하기 위해 실시되었었다. LED 조사 시 안전하게 인간의 피부에 적용할 수 있는지 여부를 결정하기 위해, LED 조사의 증식 효과는 인간 표피 각질세포에서 MTS 분석으로 결정하였다. 470nm의 파장 조사는 세포 독성 없이 mRNA의 콜라겐의 발현, 프로 콜라겐을 증가시켰으며, 이 결과는 470nm LED 조사가 피부각질세포 증식 효과와 콜라겐 합성에 영향을 미칠 수 있음을 시사한다. 또한 LED 조사시 독성 효과는 인간 피부 섬유 아세포 (HDF)에서 MTS 분석으로 결정 한 결과 세포 증식에 독성을 나타내지 않았다. 470nm LED 조사시 시험 관내 콜라겐 합성 활동을 증가시킴으로 피부미용 및 융복합적인 부분에 활용할 수 있는 기초 자료로 활용이 가능하다고 사료된다.

630 nm-OLED Accelerates Wound Healing in Mice Via Regulation of Cytokine Release and Genes Expression of Growth Factors

  • Mo, SangJoon;Chung, Phil-Sang;Ahn, Jin Chul
    • Current Optics and Photonics
    • /
    • 제3권6호
    • /
    • pp.485-495
    • /
    • 2019
  • Photobiomodulation (PBM) using organic light emitting diodes (OLEDs) surface light sources have recently been claimed to be the next generation of PBM light sources. However, the differences between light emitting diodes (LEDs) and OLED mechanisms in vitro and in vivo have not been well studied. In vivo mouse models were used to investigate the effects of OLED irradiation on cellular function and cutaneous wound healing compared to LED irradiation. Mice in the LED- and OLED-irradiated groups were subjected to irradiation with 6 J/㎠ LED and OLED (630 nm), respectively, for 14 days after wounding, and some mice were sacrificed for the experiments on days 3, 7, 10, and 14. To evaluate wound healing, we performed hematoxylin-eosin and Masson's trichrome staining and quantified collagen density by computerized image analysis. The results showed that the size of the wound, collagen density, neo-epidermis thickness, number of new blood vessels, and number of fibroblasts and neutrophils was significantly influenced by LED and OLED irradiation. The tissue levels of interleukin (IL)-β, IL-6 and tumor necrosis factor (TNF)-α were investigated by immunohistochemical staining. LED and OLED irradiation resulted in a significant increase in the tissue IL-β and IL-6 levels at the early stage of wound healing (P < 0.01), and a decrease in the tissue TNF-α level at all stages of wound healing (P < 0.05), compared to the no-treatment group. The expression levels of the genes encoding vascular endothelial growth factor and transforming growth factor-beta 1 were significantly increased in LED and OLED-irradiated wound tissue at the early stage of wound healing (P < 0.01) compared to the no-treatment group. Thus, OLED as well as LED irradiation accelerated wound healing by modulating the synthesis of anti-inflammatory cytokines and the expression levels of genes encoding growth factors, promoting collagen regeneration and reducing scarring. In conclusion, this suggests the possibility of OLED as a new light source to overcome the limitations of existing PBMs.

Sodium hypochlorite treatment and light-emitting diode (LED) irradiation effect on in vitro germination of Oreorchis patens (Lindl.) Lindl

  • Bae, Kee Hwa;Oh, Kyoung Hee;Kim, Soo-Young
    • Journal of Plant Biotechnology
    • /
    • 제41권1호
    • /
    • pp.44-49
    • /
    • 2014
  • In this study, we investigated the effects of sodium hypochlorite (NaOCl) and red or blue light-emitting diode (LED) light on embryo swelling and germination of Oreorchis patens (Lindl.) Lindl. A method for determining the swelling and protocorm formation in O. patens seeds through in vitro examination of immature seeds was established. NaOCl treatment of immature seeds was found to significantly enhance the extent of embryo swelling and protocorm formation in immature zygote embryos compared to those in the untreated controls. Additionally, the effects of white fluorescent light, and red and blue LED lights on embryo swelling and protocorm formation in in vitro cultured seeds were examined and compared to the conditions with or without NaOCl treatment. The most suitable light for embryo swelling and protocorm formation was the red LED light.

Inflammatory Effect of Light-Emitting Diodes Curing Light Irradiation on Raw264.7 Macrophage

  • Jeong, Moon-Jin;Kil, Ki-Sung;Lee, Myoung-Hwa;Lee, Seung-Yeon;Lee, Hye-Jin;Lim, Do-Seon;Jeong, Soon-Jeong
    • 치위생과학회지
    • /
    • 제19권2호
    • /
    • pp.133-140
    • /
    • 2019
  • Background: The light-emitting diode (LED) curing light used is presumed to be safe. However, the scientific basis for this is unclear, and the safety of LED curing light is still controversial. The purpose of this study was to investigate the effect of LED curing light irradiation according to the conditions applied for the polymerization of composite resins in dental clinic on the cell viability and inflammatory response in Raw264.7 macrophages and to confirm the stability of LED curing light. Methods: Cell viability and cell morphology of Raw264.7 macrophages treated with 100 ng/ml of lipopolysaccharide (LPS) or/and LED curing light with a wavelength of 440~490 nm for 20 seconds were confirmed by methylthiazolydiphenyl-tetrazolium bromide assay and microscopic observation. The production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) was confirmed by NO assay and $PGE_2$ enzyme-linked immunosorbent assay kit. Expression of interleukin $(IL)-1{\beta}$ and tumor necrosis factor $(TNF)-{\alpha}$ in total RNA and protein was confirmed by reverse transcription polymerase chain reaction and Western blot analysis. Results: The LED curing light did not affect the viability and morphology of normal Raw264.7 cells but affected the cell viability and induced cytotoxicity in the inflammation-induced Raw264.7 cells by LPS. The irradiation of the LED curing light did not progress to the inflammatory state in the inflammation-induced Raw264.7 macrophage. However, LED curing light irradiation in normal Raw264.7 cells induced an increase in NO and $PGE_2$ production and mRNA and protein expression of $(IL)-1{\beta}$ and $(TNF)-{\alpha}$, indicating that it is possible to induce the inflammatory state. Conclusion: The irradiation of LED curing light in RAW264.7 macrophage may induce an excessive inflammatory reaction and damage oral tissues. Therefore, it is necessary to limit the long-term irradiation which is inappropriate when applying LED curing light in a dental clinic.

630nm LED 광원이 세포 증식에 미치는 효과 (Effects of 630nm LED light source to the cell proliferntion)

  • 김태곤;천민우;박용필;김성환;송창훈;김영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.349-350
    • /
    • 2006
  • In this module, RED Light Emitting Diode was employed to replace for Low level He-Ne laser for medical applications Each experiment was performed to irradiation group and non-irradiation group for both Dog bone marrow and Rat tissue cells. MTT assay method was chosen to verify the cell increase of two groups and the effect of irradiation on cell proliferation was examined by measuring 590nm transmittance of ELISA reader. As a result, the cell increase of 37% on Dog bone marrow, 23% on Rat tissue cells was verified m irradiation group as compared to non-irradiation group. The fact that specific wavelength irradiation has an effect on cell vitality and proliferation is known through this study.

  • PDF