• 제목/요약/키워드: Light Sensor

검색결과 1,427건 처리시간 0.027초

Development of An Optical Surface Roughness Sensor for On-the-Machine Measurement (기상 측정을 위한 광학적 표면 거칠기 측정 센서 개발)

  • Kim, Hyun-Soo;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제11권6호
    • /
    • pp.168-178
    • /
    • 1994
  • This paper presents an optical surface roughness sensor developed for intermediate- process measurement on the machine. The light scattering method is adopted for the sensor, which is designed conpact and flexible enough to apply to 'on the machine' measurement of surface roughness. The developed sensor has special features such that it makes use, as the measurement parameter, of the ratio between fluxes of the incident light, and the specularly and partly diffusely reflected light, and that it can adjust the incident light angle. The experimental investigation reveals not only the sensor has good performance as a surface roughness sensor but the sensor is very robust so as to be useful in in-process measurement.

  • PDF

Intelligent building light control system based on wireless sensor network (무선 센서 네트워크 기반의 빌딩 조명 제어 시스템)

  • Kang, Jeong-Hoon;Yoo, Jun-Jae;Yoon, Myung-Hyun;Lee, Myung-Soo;Lim, Ho-Jung;Lee, Min-Goo;Jang, Dong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2006년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.174-176
    • /
    • 2006
  • Sensor network supports data delivery from Physical world to cyber space. Sensors get physical events then wireless network transfers sensor data to service server. We use sensor network technology to light control system for intelligent building. In ubiquitous computing environment. wireless sensor network is basic tool for intelligent service. In this paper, we propose intelligent building light control system based on wireless sensor network. It is implemented using previous light control product, can be adopted to present building light system.

  • PDF

The Verification of Photoplethysmography Using Green Light that Influenced by Ambient Light (녹색광을 이용한 반사형 광용적맥파측정기의 주변광 간섭시 신호측정)

  • Chang, K.Y.;Ko, H.C.;Lee, J.J.;Yoon, Young Ro
    • Journal of Biomedical Engineering Research
    • /
    • 제35권5호
    • /
    • pp.125-131
    • /
    • 2014
  • The purpose of this study is to verify the utility of reflected photoplethysmography sensor using two green light emitting diodes that influenced by ambient light. Recently it has been studied that green light emitting diode is suitable for light source of reflected photoplethysmography sensor at low temperature and high temperature. Another study showed that, green light is better for monitoring heart rate during motion than led light. However, it has a bad characteristic about ambient light noise. To verify the utility of reflected photoplethysmography sensor using green light emitting diode, this study measures the photoplethysmography signal that is distorted by ambient light and will propose a solution. This study has two parts of research method. One is measurement system that composed sensor and board. The sensor is made up PE-foam and Non-woven fabric for flexible sensor. The photoplethysmography signal is measured by measurement board that composed high-pass filter, low-pass filter and amplifier. Ambient light source is light bulb and white light emitting diode that has three steps brightness. Photoplethysmography signal is measured with lead II electrocardiography signal at the same time and it is measured at the finger and radial artery for 1 minute, 1000 Hz sampling rate. The lead II electrocardiography signal is a standard signal for heart rate and photoplethysmography signal that measured at the finger is a standard signal for waveform. The test is repeated 3 times using three sensor. The data is processed by MATLAB to verify the utility by comparing the correlation coefficient score and heart rate. The photoplethysmography sensor using two green light emitting diodes is shown better utility than using one green light emitting diode and red light emitting diode at the ambient light. The waveform and heart rate that measured by two green light emitting diodes are more identical than others. The amount of electricity used is less than red light emitting diode and error peak detectability factor is the lowest.

Estimation of Specular Light Power by Adjusting Incident Laser Power for Measuring Mirror-Like Surface Roughness (경면 거칠기 측정을 위해 레이저 입사 강도 조정에 의한 정반사 광량 추정 알고리즘 개발)

  • 서영호;김주년;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2004
  • From the Beckmann's reflection model of wave incident, reflected light from a surface is known to have not only specular but also diffuse components. The specular component dominant a surface for a mirror-like surface is distributed on the almost the same area as the spot on the surface, but the diffuse component region dominant f3r a rough surface spreads scattered on the larger areas than the spot. Therefore, statistic parameters from the scattered light distribution are more meaningful in the diffuse region, while the magnitude of rather meaning in the specular region. In usual, there need two sensors to acquire two kinds of information: Photo-detector for light intensity magnitude and image sensor for light intensity distribution. But dual sensor scheme requires a beam splitter usually to feed light to each sensor, and moreover there is not a combination rule to relieve the different sensor characteristics. In this study a new method is proposed for acquisition of the dual information using only an image sensor. Specular region is established on an image area being distinguished from a diffuse component, and laser power is adjusted so that no pixel of the image sensor in the specular region is saturated. Simulation based on the light reflection theory and the experimental results are quite well matched, and thus the proposed method was proved to be very useful for mirror-like surface measurement.

Traffic Light Detection Method in Image Using Geometric Analysis Between Traffic Light and Vision Sensor (교통 신호등과 비전 센서의 위치 관계 분석을 통한 이미지에서 교통 신호등 검출 방법)

  • Choi, Changhwan;Yoo, Kook-Yeol;Park, Yongwan
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • 제10권2호
    • /
    • pp.101-108
    • /
    • 2015
  • In this paper, a robust traffic light detection method is proposed by using vision sensor and DGPS(Difference Global Positioning System). The conventional vision-based detection methods are very sensitive to illumination change, for instance, low visibility at night time or highly reflection by bright light. To solve these limitations in visual sensor, DGPS is incorporated to determine the location and shape of traffic lights which are available from traffic light database. Furthermore the geometric relationship between traffic light and vision sensor is used to locate the traffic light in the image by using DGPS information. The empirical results show that the proposed method improves by 51% in detection rate for night time with marginal improvement in daytime environment.

Design of TCP-Light Protocol for wireless sensor network (무선센서네트워크를 위한 TCP-Light 프로토콜 설계)

  • Kim, Sun-Young;Jin, Kyo-Hong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국해양정보통신학회 2008년도 춘계종합학술대회 A
    • /
    • pp.477-480
    • /
    • 2008
  • In this paper, we design the TCP-Light protocol for directly connecting a sensor network with Internet. When we are monitoring the data and controlling of the sensor node, the sensor network must be connected to Internet. But TCP in wireless networks has a number of performance problems which is high bit-error rates and a hardware constraint. Moreover, the end-to-end acknowledgment and retransmission scheme employed by TCP causes expensive retransmissions along every hop of the path between the sender and the receiver. This paper introduces The TCP-Light protocol which increases TCP performance in wireless sensor networks, decreases the number of end-to-end retransmissions and decreases memory consumption.

  • PDF

Fabrication and characterization of plastic fiber optic temperature sensor using TSCM (TSCM을 이용한 플라스틱 광섬유 온도센서의 제작 및 특성평가)

  • Lee, Bong-Soo;Heo, Hye-Young;Cho, Dong-Hyun;Kim, Sin;Cho, Hyo-Sung
    • Journal of Sensor Science and Technology
    • /
    • 제14권3호
    • /
    • pp.180-185
    • /
    • 2005
  • In this study, a plastic fiber-optic temperature sensor is fabricated using TSCM(thermo sensitive clouding material) which changes its light transmittance with temperature and the characteristics of this sensor are evaluated. The fabricated fiber optic temperature sensor is the reflector type using a Y-coupler. The optimum light source and reflector are decided by measuring the amount of reflected light through TSCM. Also, the optimum distance from the end of sensor to the surface of reflector is determined. Then the relationship between the amount of measured reflected light and the temperature of TSCM is found.

A measurement of wave length response on light emitting diode by a simplified wavemeter with a semiconductor color sensor

  • Muraoka, Tetsuya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1956-1960
    • /
    • 1991
  • This paper describes the measured results upon monochromatic light, compound light, and light emanated from light emitting diodes by a simplified wavemeter with a semiconductor color sensor. Since a single unit element of a semiconductor color sensor with two PN junction photodiodes has been developed, the author has fabricated the simplified wave detector by using the element. The simplified wive detector has been measured results upon monochromatic light, compound light, and light emanated from light emitting diodes. Since luminescent color of each diode locates in luminosity region, comparison of measured values of PD-150 and PD-151 resulted no remarkable difference in averaged wave length. As for monochromatic light, PD-151 showed very cross value to the color filter peak value rather than PD-150. As for compound light, PD-150 has shown such influence of long wave length light which reaches to near infrared ray with respect to PD-151.

  • PDF

Improvement of Sensitivity in Porous Silicon Alcohol Gas Sensors by UV Light (자외선조사에 의한 다공질 실리콘 알코올 센서의 감도 개선)

  • Kim, Seong-Jin;Choe, Bok-Gil
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제48권9호
    • /
    • pp.676-680
    • /
    • 1999
  • To do breath alcohol measurement, a sensor is necessary that it can detect low alcohol gas concentration of 0.01% at least. In this work, a capacitance-type alcohol gas sensor using porous silicon layer is developed to measure low alcohol gas concentration. The sensor using porous silicon layer has some sensitivity at room temperature by very large effective surface area, but there is still much room for improvement. In this experiment, we measured the capacitance of the sensor under 254 nm UV light on the porous silicon layer, in which alcohol solution was kept in a flask at 25, 35, and $45^{\circ}C$ by a heater. As the result, the improvement of sensitivity by illuminating UV light was observed. The increasing rate of the capacitance was shown to be double more than those measured under UV-off state. It is supposed that UV light activates response of the oriental and interfacial polarizations which have slow relaxation time for AC field.

  • PDF

A Novel Ultraviolet Sensor using Photoluminescent Porous Silicon (광 루미네슨스 다공질 실리콘을 이용한 새로운 자외선 센서)

  • Min, Nam-Gi;Go, Ju-Yeol;Gang, Cheol-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • 제50권9호
    • /
    • pp.444-449
    • /
    • 2001
  • In this paper, a novel ultraviolet sensor is presented based on a photoluminescent porous silicon. Porous silicon layer was formed by chemical etching of surface of pn junction in a $HF(48%)-HNO_3(60%)-H_20$ solution. Incident ultraviolet(UV) light is converted to visible light by photoluminescent porous silicon layer, and then this visible light generates electron-hole pairs in the pn junction, which produces a photocurrent flow through the device. In order to maximize detection efficiency, the peak sensitivity wavelength of the pn junction diode was matched with the peak wavelength of Photoluminescence from porous silicon layer. The porous silicon ultraviolet sensor showed a large output current as UV intensity increases and but very low sensitivity to visible light. The detection sensitivity of porous silicon sensor was calculated as 2.91mA/mW. These results are expected to open up a possibility that the present porous silicon sensor can be used for detecting UV light in a visible background, compared to silicon UV detectors which have an undesirable response to visible light.

  • PDF