• Title/Summary/Keyword: Light Sensitivity

Search Result 614, Processing Time 0.03 seconds

Detecting of Proximal Caries in Primary Molars using Pen-type QLF Device (펜-타입 QLF 장비의 임상적 유구치 인접면 우식 탐지 성능)

  • Cho, Hyejin;Kim, Hyuntae;Song, Ji-Soo;Shin, Teo Jeon;Kim, Jung-Wook;Jang, Ki-Taeg;Kim, Young-Jae
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.48 no.4
    • /
    • pp.405-413
    • /
    • 2021
  • The purpose of this in vivo study was to assess the clinical screening performance of a quantitative light-induced fluorescence (QLF) device in detecting proximal caries in primary molars. Fluorescence loss, red autofluorescence and a simplified QLF score for proximal caries (QS-proximal) were evaluated for their validity in detecting proximal caries in primary molars compared to bitewing radiography. Three hundred and forty-four primary molar surfaces were included in the study. Carious lesions were scored according to lesion severity assessed by visual-tactile and radiographic examinations. The QLF images were analyzed for two quantitative parameters, fluorescence loss and red autofluorescence, as well as for QS-proximal. For both quantitative parameters and QS-proximal, the sensitivity, specificity and area under receiver operating curve (AUROC) were calculated as a function of the radiographic scoring index at enamel and dentin caries levels. Both quantitative parameters showed fair AUROC values for detecting dentine level caries (△F = 0.794, △R = 0.750). QS-proximal showed higher AUROC values (0.757 - 0.769) than that of visual-tactile scores (0.653) in detecting dentine level caries. The QLF device showed fair screening performance in detecting proximal caries in primary molars compared to bitewing radiography.

COMPARATIVE STUDY ON THE EARLY DETECTION OF ENAMEL LESIONS USING DIFOTI AND LASER FLUORESCENCE (Digital Imaging Fiber-Optic Trans-Illumination과 Laser Fluorescence를 이용한 법랑질 우식증의 조기 진단에 관한 비교 연구)

  • Maeng, Myoung-Ho;Kim, Seung-Oh;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.2
    • /
    • pp.207-220
    • /
    • 2006
  • The newly developed equipments for the early detection of carious lesion are LFD (laser fluorescence device), Ultrasonic diagnostic system, CLSM(confocal laser scanning microscopy), QLF(quantitative light-induced fluorescence) and DIFOTI (digital imaging fiber-optic trans-illumination) system. In this study, DIFOTI system and LFD were used for the detection of early enamel caries. Twenty five primary teeth extracted from twenty one children at around the dentitional exchanging period were selected as samples. The results obtained from DIFOTI imaging and LFD measurement were compared with those of CLSM and comprehensive evaluations were made for the diagnostic capacity of each device. In vitro test, 40 sample teeth with their buccal & lingual surface formed by a window of $2{\times}3mm$ in diameter were immersed in artificial demineralizing solution for the period of 4, 8, 12 and 16 days. The results obtained from the experimental groups (DIFOTI, LFD) were compared to control group (CLSM) and we have reached to the following conclusions. 1. The sensitivity and specificity of DIFOTI system operated in oral environment was 88.2% and 76.9% respectively. 2. The sensitivity and specificity of LFD measured in oral environment was 76.5% and 69.2% respectively. 3, Regression analysis on the light transparent rate of DIFOTI showed its decrease according to the length of primary enamel decalcification performed in vitro(r=-0.96, p<0.05). 4. No statistically significant difference between LFT measurement and the length of in vitro decalcification was found in regression analysis (p>0.05). 5. The correlation coefficient of DIFOTI image transparent rate and the lesion depth of CLMS was -0.6988 (p<0.05), whereas no statistically significant difference was found for LFD measurement.

  • PDF

A study on optical coherence tomography system using optical fiber (광섬유를 이용한 광영상 단층촬영기에 관한연구)

  • 양승국;박양하;장원석;오상기;김현덕;김기문
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.5-9
    • /
    • 2004
  • In this paper, we studied the OCT(Optical Coherence Tomography) system which it has been extensively studied because of having some advantages such as high resolution cross-sectional images, low cost, and small size configuration. A basic principle of OCT system is Michelson interferometer. The characteristics of light source determine the resolution and the transmission depth. As a results, the light source have a commercial SLD with a central wavelength of 1,285 nm and FWHM(Full Width at Half Maximum) of 35.3 nm. The optical delay line part is necessary to equal of the optical path length with scattered light or reflected light from sample. In order to equal the optical path length, the stage which is attached to reference mirror is moved linearly by step motor And the interferometer is configured with the Michelson interferometer using single mod fiber, the scanner can be focused of the sample by using the reference arm. Also, the 2-dimensional cross-sectional images were measured with scanning the transverse direction of the sample by using step motor. After detecting the internal signal of lateral direction at a paint of sample, scanner is moved to obtain the cross-sectional image of 2-demensional by using step motor. Photodiode has been used which has high detection sensitivity, excellent noise characteristic, and dynamic range from 800 nm to 1,700 nm. It is detected mixed small signal between noise and interference signal with high frequency After filtering and amplifying this signal, only envelope curve of interference signal is detected. And then, cross-sectional image is shown through converting this signal into digitalized signal using A/D converter. The resolution of the OCT system is about 30$\mu\textrm{m}$ which corresponds to the theoretical resolution. Also, the cross-sectional image of ping-pong ball is measured. The OCT system is configured with Michelson interferometer which has a low contrast because of reducing the power of feedback interference light. Such a problem is overcomed by using the improved inteferometer. Also, in order to obtain the cross-sectional image within a short time, it is necessary to reduce the measurement time for improving the optical delay line.

  • PDF

Clinical assessment of whitening efficacy and safety of in-office tooth whitening system containing 15% hydrogen peroxide with or without light activation (15% 과산화수소 함유 전문가용 치아 미백제의 광활성화 여부에 따른 미백효과 및 안전성에 관한 임상평가)

  • Noh, Young-Suk;Rho, Young-Jee;Yoo, Yeon-Jee;Lee, Hyang-Ok;Lim, Sang-Min;Kweon, Hyun-Jeong;Kim, Ye-Un;Park, Seong-Yeon;Yoon, Hee-Young;Lee, Jung-Hyun;Lee, Chan-Hee;Oh, So-Ram;Kum, Kee-Yeon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.4
    • /
    • pp.306-312
    • /
    • 2011
  • Objectives: This clinical study evaluated the effect of light activation on the whitening efficacy and safety of in-office bleaching system containing 15% hydrogen peroxide gel. Materials and Methods: Thirty-three volunteers were randomly treated with (n = 17, experimental group) or without light activation (n = 16, control group), using Zoom2 white gel (15% $H_2O_2$, Discus Dental) for a total treatment time of 45 min. Visual and instrumental color measurements were obtained using Vitapan Classical shade guide and Shadepilot (DeguDent) at screening test, after bleaching, and 1 month and 3 month after bleaching. Data were analyzed using t-test, repeated measure ANOVA, and chi-squared test. Results: Zoom2 white gel produced significant shade changes in both experimental and control group when pre-treatment shade was compared with that after bleaching. However, shade difference between two groups was not statistically significant (p > 0.05). Tooth shade relapse was not detected at 3 months after bleaching. The incidence of transient tooth sensitivity was 39.4%, with being no differences between two groups. Conclusions: The application of light activation with Zoom2 white gel system neither achieved additional whitening effects nor showed more detrimental influences.

Parameter Sensitivity Analysis for Spatial and Temporal Temperature Simulation in the Hapcheon Dam Reservoir (합천댐 저수지에서의 시공간적 수온모의를 위한 매개변수 민감도 분석)

  • Kim, Boram;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.12
    • /
    • pp.1181-1191
    • /
    • 2013
  • This study have implemented finding the optimal water temperature parameter set for Hapcheon dam reservoir using CE-QUAL-W2 model. In particular the sensitivity analysis was carried out for four water temperature parameters of wind sheltering coefficient (WSC), radiation heat coefficient (BETA), light extinction coefficient (EXH2O), heat exchange coefficient at the channel bed (CBHE). Firstly, WSC, BETA, EXH2O shows relatively high sensitivity in common during April to September, and CBHE does during August to November. Secondly, as a result of identifying depth range of parameter influence, BETA and EXH2O show 0~9 m and 8~14 m which is thermocline layer close to water surface, CBHE is deep layer 12 m away from bottom. Finally, applying annual or monthly optimal parameter sets indicates that the bias between two sets does not show much differences for WSC and CBHE parameters, but BETA and EXH2O parameters show $0.20^{\circ}C$ and $0.51^{\circ}C$ of monthly average biases for two parameter sets. In particular the bias reveals to be $0.4^{\circ}C$ and $1.09^{\circ}C$ during May and August that confirms the necessity of use of monthly parameters during that season. It is claimed that the current operational custom use of annual parameters in calibration of reservoir water quality model requires the improvement of using monthly parameters.

Establishment of a NanoBiT-Based Cytosolic Ca2+ Sensor by Optimizing Calmodulin-Binding Motif and Protein Expression Levels

  • Nguyen, Lan Phuong;Nguyen, Huong Thi;Yong, Hyo Jeong;Reyes-Alcaraz, Arfaxad;Lee, Yoo-Na;Park, Hee-Kyung;Na, Yun Hee;Lee, Cheol Soon;Ham, Byung-Joo;Seong, Jae Young;Hwang, Jong-Ik
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.909-920
    • /
    • 2020
  • Cytosolic Ca2+ levels ([Ca2+]c) change dynamically in response to inducers, repressors, and physiological conditions, and aberrant [Ca2+]c concentration regulation is associated with cancer, heart failure, and diabetes. Therefore, [Ca2+]c is considered as a good indicator of physiological and pathological cellular responses, and is a crucial biomarker for drug discovery. A genetically encoded calcium indicator (GECI) was recently developed to measure [Ca2+]c in single cells and animal models. GECI have some advantages over chemically synthesized indicators, although they also have some drawbacks such as poor signal-to-noise ratio (SNR), low positive signal, delayed response, artifactual responses due to protein overexpression, and expensive detection equipment. Here, we developed an indicator based on interactions between Ca2+-loaded calmodulin and target proteins, and generated an innovative GECI sensor using split nano-luciferase (Nluc) fragments to detect changes in [Ca2+]c. Stimulation-dependent luciferase activities were optimized by combining large and small subunits of Nluc binary technology (NanoBiT, LgBiT:SmBiT) fusion proteins and regulating the receptor expression levels. We constructed the binary [Ca2+]c sensors using a multicistronic expression system in a single vector linked via the internal ribosome entry site (IRES), and examined the detection efficiencies. Promoter optimization studies indicated that promoter-dependent protein expression levels were crucial to optimize SNR and sensitivity. This novel [Ca2+]c assay has high SNR and sensitivity, is easy to use, suitable for high-throughput assays, and may be useful to detect [Ca2+]c in single cells and animal models.

Metal Oxide Thin Film Transistor with Porous Silver Nanowire Top Gate Electrode for Label-Free Bio-Relevant Molecules Detection

  • Yu, Tae-Hui;Kim, Jeong-Hyeok;Sang, Byeong-In;Choe, Won-Guk;Hwang, Do-Gyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.268-268
    • /
    • 2016
  • Chemical sensors have attracted much attention due to their various applications such as agriculture product, cosmetic and pharmaceutical components and clinical control. A conventional chemical and biological sensor is consists of fluorescent dye, optical light sources, and photodetector to quantify the extent of concentration. Such complicated system leads to rising cost and slow response time. Until now, the most contemporary thin film transistors (TFTs) are used in the field of flat panel display technology for switching device. Some papers have reported that an interesting alternative to flat panel display technology is chemical sensor technology. Recent advances in chemical detection study for using TFTs, benefits from overwhelming progress made in organic thin film transistors (OTFTs) electronic, have been studied alternative to current optical detection system. However numerous problems still remain especially the long-term stability and lack of reliability. On the other hand, the utilization of metal oxide transistor technology in chemical sensors is substantially promising owing to many advantages such as outstanding electrical performance, flexible device, and transparency. The top-gate structure transistor indicated long-term atmosphere stability and reliability because insulator layer is deposited on the top of semiconductor layer, as an effective mechanical and chemical protection. We report on the fabrication of InGaZnO TFTs with silver nanowire as the top gate electrode for the aim of chemical materials detection by monitoring change of electrical properties. We demonstrated that the improved sensitivity characteristics are related to the employment of a unique combination of nano materials. The silver nanowire top-gate InGaZnO TFTs used in this study features the following advantages: i) high sensitivity, ii) long-term stability in atmosphere and buffer solution iii) no necessary additional electrode and iv) simple fabrication process by spray.

  • PDF

Structure-Property Relationship of PVA-SbQ Water Soluble Photosensitive Polymer and its Application to Screening Process of Color Monitor (PVA-SbQ 수용성 감광성 고분자의 구조와 감도관계 및 칼라 수상관 스크린 공정에의 응용)

  • Park, Lee Soon;Han, Yoon Soo;Kim, Bong Chul
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.379-386
    • /
    • 1996
  • Photosensitive compound, 1-methyl-4-[2-(4-diethylacetylphenyl)ethenyl] pridinium methosulfate(SbQ-A salt), was synthesized from dimethyl sulfate, terephthalaldehyde mono-(diethylacetal) and 4-picoline. SbQ-A salts were reacted with poly(vinyl alcohol)s, (PVA) in aqueous solution with phosphoric acid as catalyst to give photosensitive PVA-SbQ with different SbQ content and molecular weight. Relative photosensitivity of PVA-SbQ was determined by gray scale(GS) method. The rotative sensitivity of PVA-SbQ increased with increasing amount of bound SbQ in the case of high molecular weight(MW=77,000-79,000g/mol) as substrate and decreased with decreasing molecular weight of PVA with about constant(1.3mol%) amount of bound SbQ. The most sensitive polymer was obtained when SbQ group content in PVA-SbQ reached about 2.63mol% in the case of high molecular weight(77,000-79,000g/mol) PVA. This sample showed 90 times greater sensitivity than dichromated PVA as reference photosensitive system. PVA-SbQ photosensitive polymer synthesized was applied to the photolithographic screening process of phosphor on the panel of cathode ray tube(CRT). Phosphor slurry was made with PVA-SbQ, phosphor, a small amount of surfactant and other additives using water as medium. The slurry was coated onto panel, dried by heater, exposed to UV light and then developed by distilled water. When a small amount of cationic surfactant such as cetyltrimethylammonium chloride was used in the slurry formulation, the sharpness of phosphor pattern was equal to or better than that of dichromated PVA photosensitive polymer system used currently.

  • PDF

Weathering Properties and Slope Stability Evaluations of Bedrock under the Chokseongnu Pavilion, Jinjuseong Fortress, Korea (진주성 촉석루 성곽지반의 풍화특성과 사면안정성 평가)

  • Jo, Young-Hoon;Lee, Myeong-Seong;Lee, Sun-Myung;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.20
    • /
    • pp.89-103
    • /
    • 2007
  • The bedrock beneath the Chokseongnu pavilion consists of sandstone with alternate dark-gray to light-brown siltstone and dark-gray shale of the Jinju Formation, where bedding is well developed toward the Chokseongmun gate. Large to small joints and overbreak from the erosion weathering have been developed in the bedrock. Besides, water leakage from development of discontinuity planes, fragmentation of shale, crack and joint by tree roots are observed on the bedrock. While shale and siltstone showed high sensitivity in physical and chemical weathering, respectively, sandstone indicated the highest weathering sensitivity in both. As the results of structural stability analysis, the whole bedrock has high instability in wedge failures, and especially section No. II slope is more instable than section No. I. Therefore, it is necessary for the bedrock to be strengthened by improvement method for soft foundations and the surface reinforcement. The trees causing mechanical collapse of the bedrock should be also removed and a water flow prevention measure or a water exhaust are required.

  • PDF

Assessment of the Potential Environmental Impact of Smart Phone using LCA Methodology (LCA 기법을 활용한 스마트폰의 잠재적 환경영향평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.527-533
    • /
    • 2017
  • Environmental concern about smart phone is growing because it has short product life span while having intensive production technology and cost. In this study environmental impact of the smart phone is quantified using the LCA methodology based on the ISO 14040 series standards. The assessment considers potential environmental impacts across the whole life cycle of the smart phone including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages. The pre-manufacturing stage is the most dominant life cycle stage causing the highest environmental impacts among all 10 impact categories assessed. The global warming impacts of the smart phone in the pre-manufacturing, distribution, use, manufacturing, and end-of-life stages were 52.6% 23.9%, 15.7%, 7.0%, and 0.8%, respectively. Sensitivity of the life cycle impact assessment results to the system boundary definition and assumptions made were quite high. Three components of the smart phone, PCB, battery, and display module were identified as the key components causing majority of the potential environmental impact in the pre-manufacturing stage. As such the slim and light-weight design and the use of environmental friendly materials are important design factors for reducing the environmental impact of the smart phone.