• Title/Summary/Keyword: Light Scattering Method

Search Result 328, Processing Time 0.028 seconds

Calculations of Optical Properties of Cloud Particles to Improve the Accuracy of Forward Scattering Probes for In-Situ Aircraft Cloud Measurements (항공기 구름 관측에 사용되는 전방산란 관측 기기의 정확도 향상을 위한 구름입자의 광학적 특성 계산)

  • Um, Junshik
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.75-89
    • /
    • 2020
  • Current in-situ airborne probes that measure the sizes of ice crystals smaller than 50 ㎛ are based on the concept that the measured intensity of light scattered by a particle in the forward and/or backward direction can be converted to particle size. The relationship between particle size and scattered light used in forward scattering probes is based on Mie theory, which assumes the refractive index of particle is known and all particles are spherical. Not only are small crystals not spherical, but also there are a wide variety of non-spherical shapes. Although it is well known that the scattering properties of non-spherical ice crystals differ from those of spherical shapes, the impacts of non-sphericity on derived in-situ particle size distributions are unknown. Thus, precise relationships between the intensity of scattered light and particle size and shape are required, as based on accurate calculations of scattering properties of ice crystals. In this study, single-scattering properties of ice crystals smaller than 50 ㎛ are calculated at a wavelength of 0.55 ㎛ using a numerically exact method (i.e., discrete dipole approximation). For these calculations, hexagonal ice crystals with varying aspect ratios are used to represent the shapes of natural small ice crystals to determine the errors caused by non-spherical ice crystals measured by forward scattering probes. It is shown that the calculated errors in sizing nonspherical ice crystals are at least 13% and 26% in forward (4~12°) and backward (168~176°) directions, respectively, and maximum errors are up to 120% and 132%.

Study of Aerosol Light Absorption Measurement Operated in a Vehicle Using an Interferometer (간섭계를 이용한 차량 기반 에어로졸 광흡수 측정 연구)

  • Lee, Jeong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1317-1324
    • /
    • 2011
  • We propose a method operated in a vehicle to measure light absorption of particles in atmosphere. The advantage of this method is that it is insensitive to light scattering and hence can be used for the direct measurement of the light absorption coefficient without suffering from light scattering. With this method atmospheric light absorption can be measured at a time constant of 10 s. Further, our method allows for the real-time measurement of light absorption near a highway. The light absorption coefficients were high near a race track, an airport and the main gate where vehicles emitted carbonaceous particles.

Image Through a Scattering Medium using Femtosecond light pulse gating method

  • Chen, Guofu
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.1-1
    • /
    • 2000
  • This paper presents a holography through high scatter mediums. Femtosecond light pulses are used as object light and reference light. When light passes through a high scatter medium, there are ballistic light, snake light and difussive light in transmitting light. However, ballistic and snake light are very weak, difussive light is very stronge so that they can not be imaged directly, By using femtosecond laser electronic holographic gating method to gate ballistic light and snake light and multi-holograms processing technology, high quality images can be obtained. (omitted)

  • PDF

A noncontact optical roughness measurement technique of ground surface by light scattering (광산란을 이용한 연삭표면의 비접촉식 광학적 조도측정기술)

  • 임동열;김승우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.6
    • /
    • pp.1303-1311
    • /
    • 1988
  • Described is method for development of an optical roughness measurement sensor for in-subequality assurance in the precision grinding. Main approach is made based upon the Brckmann's light scattering theory, in which general solutions of the optical scattering behaviour are given under many simplifying assumptions on the model of the surfaces illuminated. For the ground surface, the assumptions are verified through computer simulation and experimental work in order to examine the validity of Beckmann's theory on predicting the optical responses according to the roughness variation. As a result, an optical monitoring strategy is derived which can evaluate the roughness value of the ground surface by statistically detecting the pattern of intensity distribution of the scattered light. Finally, the strategy is proven by comparing with the results using the stylus method.

Detecting Incipient Caries Using Front-illuminated Infrared Light Scattering Imaging

  • Kim, Ji-Young;Ro, Jung-Hoon;Jeon, Gye-Rok;Kim, Jin-Bom;Ye, Soo-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.310-316
    • /
    • 2012
  • A new method for early caries diagnosis was proposed and tested through a home-made optical examination system that used quantitative light fluorescence (QLF) and digital imaging fiber optic transillumination (FOTI) (DIFOTI), with light sources across a wide spectral range, from 350 nm to 1,000 nm. The front-illuminated infrared light scattering image (FIR) showed similar diagnostic abilities to that of DIFOTI. The FIR method was invented based on the observation that caries lesions lose the high transmittance and low scattering properties of benign enamel tissue. There are various methods for the early diagnosis of caries, such as visual examination, exploration, X-ray radiography, QLF, FOTI, and infrared fluorescence (diagnodent). Among them, methods based on optical properties are regarded as having the most potential. A comparative study was performed between the FOTI, QLF, diagnodent, optical coherence tomography, and FIR scattering image methods, using 20 extracted teeth samples with early caries. A scale of lesion measurement based on optical image contrast was proposed. The statistical analysis showed a significant correlation between the DIFOTI and FIR methods (r = 0.35, p < 0.05). However, the QLF and diagnodent methods showed little association with FIR images, as they have different detection principles as compared with FIR. Tomographic images obtained by OCT, using 1,330 nm super luminescent LED as a gold standard of tooth structure, verified that the FOTI and FIR results correctly represented the lack of homogeneity in dental tissue. The newly proposed FIR method attained similar diagnostic results to those of FOTI, but with an easier approach.

A Study on the Measurements of Optical Parameters in Photosensitizer by Light Scattering (농도가 진한 매질에서 광증감제에 의한 광학적 파라미터측정에 관한 연구)

  • Kim, Ki-Jun;Lee, Jou-Joub
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • The study of wave propagation and scattering in biological media has become increasingly important in recent years. The propagation of light within tissues is an important problem that confronts the dosimetry of therapeutic laser delivery and the development of diagnostic spectroscopy. In the clinical application of photodynamic therapy(PDT) and in photobiology, the photon deposition within a tissue determines the spatial distribution of photochemical reactions. Scattered light is measured as a function of the distance (r) between the axis of the incident beam and the detection spot. Consequently, knowledge of the photosensitizer(Chlorophyll-a) function that characterizes a phantom is measured. To obtain the results of scattering coefficients(${\mu}s$) of a turbid material from diffusion described by experimental approach. It was measured the energy fluency of photon radiation at the position of penetration depth. From fluorescence experimental method obtained the analytical expression for the scattered light as the values of $(I/I_o)_{wavelength}$ vs the distance between the center of the incident beam and optical fiber in terms of the condition of "in situ spectroscopy(optically thick)" and real time by fluorometric measurements. The result was compromised with transport of intensities though a random distribution of scatters.

A new method for mapping visible-near infrared light levels in Fruit

  • Fraser, Daniel G.;Jordan, Robert B.;Kunnemeyer, Rainer;Mcglone, V. Andrew
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1128-1128
    • /
    • 2001
  • We have developed a probe for measuring the light levels inside illuminated fruit. The probe has minimal effect on the light levels being measured and enables the sampling of the light flux at any point within the fruit. We present experimental light extinction rates within apple, nashi, kiwifruit, and mandarin fruit. Moving from the illuminated side to the far side of the fruit, the extinction level follows an initial power law decay as the light diffuses into the fruit then reduces to an exponential decay through the rest of the fruit. Significant variations in the rates of light extinction are found in the core, skin and differing flesh regions. Monte Carlo simulations of the light distribution in fruit, which use scattering and absorption coefficients for the diffusely scattering tissue, and boundary conditions for the skin effects, produce results that follow the experimental results closely.

  • PDF

Development of An Optical Surface Roughness Sensor for On-the-Machine Measurement (기상 측정을 위한 광학적 표면 거칠기 측정 센서 개발)

  • Kim, Hyun-Soo;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.6
    • /
    • pp.168-178
    • /
    • 1994
  • This paper presents an optical surface roughness sensor developed for intermediate- process measurement on the machine. The light scattering method is adopted for the sensor, which is designed conpact and flexible enough to apply to 'on the machine' measurement of surface roughness. The developed sensor has special features such that it makes use, as the measurement parameter, of the ratio between fluxes of the incident light, and the specularly and partly diffusely reflected light, and that it can adjust the incident light angle. The experimental investigation reveals not only the sensor has good performance as a surface roughness sensor but the sensor is very robust so as to be useful in in-process measurement.

  • PDF

Velocity measurements in complex flows of non-Newtonian fluids

  • Muller, Susan J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.93-105
    • /
    • 2002
  • Experimental methods for making quantitative measurements of velocity fields in non-Newtonian fluids are reviewed. Techniques based on light scattering spectroscopy - laser Doppler velocimetry and homodyne light scattering spectroscopy, techniques based on imaging the displacement of markers - including particle image velocimetry and molecular tagging velocimetry, and techniques based on nuclear magnetic resonance imaging are discussed. The special advantages and disadvantages of each method are summarized, and their applications to non-Newtonian flows are briefly reviewed. Example data from each technique are also included.

Scattering of a Normally Incident Monochromatic Light by Optically Active Concentric Double Cylinders: II. Numerical Result (광학활성 동축 이중 원통을 수직하게 비추는 단색 빛의 산란 : II. 수치 계산 결과)

  • Kim, Hyun-Woo;Kim, Jin-Seung
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.375-380
    • /
    • 2009
  • The scattering of a normally incident monochromatic light by optically active concentric double cylinders is studied by using a numerical method. A numerical code is developed on the basis of the analytical solutions, and the angular distributions of the intensity and the polarization of the scattered light are computed for some specific cases. The numerical code can be used to non-invasively determine the size, structure, and composition of a double cylinder with high accuracy by measuring the angular distribution of the scattered light by an experiment.