• Title/Summary/Keyword: Light Emitting System

Search Result 547, Processing Time 0.031 seconds

Numerical Simulations of Electric-Optical Characteristics for Organic Light Emitting Diode with Gradient-Doped Emitting Layer (경사 도핑된 발광층을 갖는 유기발광다이오드의 전기광학적 특성 해석)

  • Lee, Young-Gu;Oh, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.638-644
    • /
    • 2010
  • We have carry out numerical simulation of the electric-optical characteristics of organic light emitting diodes with gradient-doped emitting layer which were reported to be effective in improving luminous efficiency and lifetime. In this paper, the basic structure is comprised of ITO/NPB/$Alq_3$:C545T[%]/$Alq_3$/LiF/Al, six devices by separating the emitting layer of $Alq_3$:C545T[%] were studied. As the result, the uniformly-doped devices exhibited superior luminous efficiency-current density characteristics over conventional undoped device. In the case of gradient-doped devices, electric-optical characteristics were improved similar to uniformed-doped devices, unusually the distribution of traped-charge density in the OLED devices was shown as the staircase.

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

Indoor positioning system of 50 cm resolution based on LED (50cm의 resolution을 가지는 LED 조명 기반의 실내 측위 시스템)

  • Jung, Soo-Yong;Hann, S-Wook;Park, Chang-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • In this paper, we present an indoor positioning system based on light emitting diode (LED). Because LED is a semiconductor light emitting device, we can easily switch and modulate electrical signals into lightwave signals at high speed using LEDs. We assigned unique 8-bit ID address to each LED lights. Photo diode receives data from 16-LED lights and takes correlation coefficient beteween received data and each LED-ID. Using correlation coefficient, proposed positioning system shows resolution of 50 cm in dimensions of $4\;m\;{\times}\;4\;m\;{\times}\;2\;m$.

Improvement of Unsaturated Fatty Acid Production from Porphyridium cruentum Using a Two-Phase Culture System in a Photobioreactor with Light-Emitting Diodes (LEDs)

  • Kim, So Hee;Lee, Ui Hun;Lee, Sang Baek;Jeong, Gwi-Taek;Kim, Sung-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this study, the culture conditions for Porphyridium cruentum were optimized to obtain the maximum biomass and lipid productions. The eicosapentaenoic acid content was increased by pH optimization. P. cruentum was cultured with modified F/2 medium in 14-L photobioreactors using a two-phase culture system, in which the green (520 nm) and red (625 nm) light-emitting diodes (LEDs) were used during the first and second phases for biomass production and lipid production, respectively. Various parameters, including aeration rate, light intensity, photoperiod, and pH were optimized. The maximum biomass concentration of 0.91 g dcw/l was obtained with an aeration rate of 0.75 vvm, a light intensity of 300 μmol m-2s-1, and a photoperiod of 24:0 h. The maximum lipid production of 51.8% (w/w) was obtained with a light intensity of 400 μmol m-2s-1 and a photoperiod of 18:6 h. Additionally, the eicosapentaenoic acid and unsaturated fatty acid contents reached 30.6% to 56.2% at pH 6.0.

InP/ZnSe/ZnS: A Novel Multishell System for InP Quantum Dots for Improved Luminescence Efficiency and Its application in a Light-Emitting Device

  • Ippen, Christian;Greco, Tonino;Wedel, Armin
    • Journal of Information Display
    • /
    • v.13 no.2
    • /
    • pp.91-95
    • /
    • 2012
  • Indium phosphide (InP) quantum dots (QDs) are considered alternatives to Cd-containing QDs for application in light-emitting devices. The multishell coating with ZnSe/ZnS was shown to improve the photoluminescence quantum yield (QY) of InP QDs more strongly than the conventional ZnS shell coating. Structural proof for this system was provided by X-ray diffraction and transmission electron microscopy. QY values in the range of 50-70% along with peak widths of 45-50 nm can be routinely achieved, making the optical performance of InP/ZnSe/ZnS QDs comparable to that of Cd-based QDs. The fabrication of a working electroluminescent light-emitting device employing the reported material demonstrated the feasibility of the desired application.

Study of High-efficiency and Long-lived Blue - Green Light Emitting Diodes Using ZnSSe:Te System Grown by MBE (ZnSSe:Te계 청 -녹색 발광다이오드의 고효율화 및 장수명화에 관한 연구)

  • 이홍찬;이상태;이성근;김윤식
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.167-171
    • /
    • 2002
  • We have investigated the optical properties of Te-doped ZnSSe:Te epitaxial layers grown on (100) GaAs substrates by molecular beam epitaxy. The Te-doped ternary specimen shows strong blue or green emission (at 300k) which is assigned to Te$_{1}$ or Te$_{n}$( n$\geq$2) cluster bound exciton. Bright green and blue light-emitting diodes (LEDs) have been developed using ZnSSe:Te system as an active layer. The green LEDs exhibit a fairly long device lifetime (>2000 h) when operated at 3 A/cm$^{2}$ under CW condition at room temperature. It is confirmed that the Te-doping induced "crystal-hardening effect" plays a significant role in both efficient and strong suppression of the optical device degradation.gradation.

  • PDF

Effect of Ancillary Ligand, Phenyl group, on the Emission Spectrum of Pt(II) Complex Useful for Organic Light-Emitting Device (유기전기발광소자에 사용될 수 있는 백금 착물에 대해 보조리간드 phenyl 기가 발광스펙트럼에 미치는 영향)

  • Lee, Seung-Hee;Lee, Ho-Joon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.265-268
    • /
    • 2008
  • Among the efforts to increase the efficiency of organic light-emitting device (OLED), there is a way: doping phosphorescent materials. As a phosphorescent material, complexes of heavy transition metal, platinum, were synthesized. $Cl^-$ ion and phenyl group were used as ancillary ligands with 2-(2-pyridyl)benzimidazole (pbi) as a chromophore. The complexes were analysed by FAB-mass spectrometer and absorption and emission spectra were obtained. A phenyl group was able to shift the emission band of the complex even if it's not a chromorphore.

Plant Growth and Morphogenesis Control in Transplant Production System using Light-emitting Diodes(LEDs) as Artificial Light Source - Spectral Characteristics and Light Intensity of LEDs - (인공광원으로 발광다이오우드를 이용한 묘생산 시스템에서 식물생장 및 형태형성 제어 - 발광다이오우드의 분광 특성 및 광강도 -)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-122
    • /
    • 1999
  • Because of their small mass, volume, solid state construction and long life, light-emitting diodes(LEDs) hold promises as a lighting source for intensive plant production system. Spectral characteristics and light intensity of LEDs were tested to investigate their feasibility as artificial lighting sources for growth and morphogenesis control in transplant production system. Blue, green, and red LEDs had a peak-emission wavelength at 442nm, 522nm, and 673nm, respectively. Their half width defined as the difference between upper and lower wavelength in the intensity equivalent to 50% of the maximum intensity showed 26nm, 41nm, and 74nm, respectively. Photosynthetic photon flux(PPE) at the distance of 9cm under the LEDs array was measured as $235{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for red, $109{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for green, and $75{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ for blue LEDs. At the same distance, green LEDs had the illuminance of 13,0001x, nine to ten times higher than those of red and blue LEDs. Red, green, and blue LEDs at a distance of 9cm had the irradiance of $46W{\cdot}m^{-2},\;19W{\cdot}m^{-2},\;8W{\cdot}m^{-2}$, respectively. Light intensity of blue, green, and red LEDs increased linearly in proportion to the magnitude of the current applied to the operating circuit. Thus the light intensity of LEDs was controlled by the applied current in operating circuit.

  • PDF