• Title/Summary/Keyword: Ligand Effects

Search Result 410, Processing Time 0.027 seconds

Expression Analysis of Chicken Interleukin-34(IL-34) for Various Pathogenic Stimulations (주요 병원균 자극에 의한 닭의 Interleukin-34 발현 분석 비교)

  • Hong, Yeong Ho
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.111-122
    • /
    • 2021
  • Recently, interleukin 34 (IL-34) was identified as the second functional ligand for macrophage colony-stimulating factor receptor (M-CSFR). IL-34 functions similarly to M-CSF through its binding to the M-CSFR. There is still insufficient information on IL-34 in chickens, which has until now been reported only through predicted sequences and not through experimental research. Thus, to confirm its expression and to determine its potent biological activity, several chicken lines and cell lines were used. Cloning of recombinant chicken IL-34 and M-CSF genes was performed to investigate their modulatory effects on proinflammatory cytokine expression in vitro. The expression levels of IL-34, M-CSF, and M-CSFR genes were upregulated in broiler chickens with leg dysfunction (cause unknown). However, IL-34 was downregulated in most pathogen-stimulated tissues. M-CSFR expression was enhanced by recombinant IL-34 and M-CSF proteins in vitro. IFN-γ expression was enhanced by recombinant IL-34, but not by M-CSF. However, IL-12 expression was not regulated in any of the treated cells, and IL-1β was decreased in all tissues. These results indicate that IL-34 and M-CSF have roles in both the classical and alternative macrophage activation pathways. Collectively, our findings demonstrate the expression of IL-34 in chickens for pathogenic trials, both in vitro and in vivo. Our results suggest that the IL-34 protein plays a role in both pro- and anti-inflammatory functions in macrophages. Therefore, further research is needed to determine the cytokines or chemokines that can be induced by IL-34 and to further elucidate the functions of IL-34 in the inflammatory pathway.

Adjuvant therapy with 1% alendronate gel for experimental periodontitis treatment in rats

  • de Campos Kajimoto, Natalia;de Paiva Buischi, Yvonne;Loomer, Peter Michael;Bromage, Timothy G.;Ervolino, Edilson;Fucini, Stephen Enrico;Pola, Natalia Marcumini;Pirovani, Beatriz Ommati;Morabito, Maria Juliana Sismeiro;de Almeida, Juliano Milanezi;Furlaneto, Flavia Aparecida Chaves;Nagata, Maria Jose Hitomi
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.6
    • /
    • pp.374-385
    • /
    • 2021
  • Purpose: The aim of this study was to evaluate the effects of locally delivered 1% alendronate (ALN) gel used as an adjunct to non-invasive periodontal therapy. Methods: Ligature-induced periodontitis was performed in 96 rats. The ligature was tied in the cervical area of the mandibular left first molar. The animals were randomly divided into 4 groups: 1) NT, no treatment; 2) SRP, scaling and root planning; 3) SRP/PLA, SRP followed by filling the periodontal pocket with placebo gel (PLA); and 4) SRP/ALN, SRP followed by filling the periodontal pockets with 1% ALN gel. Histomorphometric (percentage of bone in the furcation region [PBF]) and immunohistochemical (receptor activator of nuclear factor-κB ligand, osteoprotegerin, and tartrate-resistant acid phosphatase) analyses were performed. Data were statistically analyzed, with the threshold of statistical significance set at P≤0.05. Results: The SRP, SRP/PLA, and SRP/ALN groups presented a higher PBF than the NT group (P≤0.01) at 7, 15, and 30 days. The SRP/ALN group presented a higher PBF than the SRP/PLA group in all experimental periods, as well as a higher PBF than the SRP group at 15 and 30 days. No differences were observed in the immunohistochemical analyses (P>0.05 for all). Conclusions: Locally delivered 1% ALN gel used as an adjunct to SRP enhanced bone regeneration in the furcation region in a rat model of experimental periodontitis.

Impact of NR1I2, adenosine triphosphate-binding cassette transporters genetic polymorphisms on the pharmacokinetics of ginsenoside compound K in healthy Chinese volunteers

  • Zhou, Luping;Chen, Lulu;Wang, Yaqin;Huang, Jie;Yang, Guoping;Tan, Zhirong;Wang, Yicheng;Liao, Jianwei;Zhou, Gan;Hu, Kai;Li, Zhenyu;Ouyang, Dongsheng
    • Journal of Ginseng Research
    • /
    • v.43 no.3
    • /
    • pp.460-474
    • /
    • 2019
  • Background: Ginsenoside compound K (CK) is a promising drug candidate for rheumatoid arthritis. This study examined the impact of polymorphisms in NR1I2, adenosine triphosphate-binding cassette (ABC) transporter genes on the pharmacokinetics of CK in healthy Chinese individuals. Methods: Forty-two targeted variants in seven genes were genotyped in 54 participants using Sequenom MassARRAY system to investigate their association with major pharmacokinetic parameters of CK and its metabolite 20(S)-protopanaxadiol (PPD). Subsequently, molecular docking was simulated using the AutoDock Vina program. Results: ABCC4 rs1751034 TT and rs1189437 TT were associated with increased exposure of CK and decreased exposure of 20(S)-PPD, whereas CFTR rs4148688 heterozygous carriers had the lowest maximum concentration ($C_{max}$) of CK. The area under the curve from zero to the time of the last quantifiable concentration ($AUC_{last}$) of CK was decreased in NR1I2 rs1464602 and rs2472682 homozygous carriers, while $C_{max}$ was significantly reduced only in rs2472682. ABCC4 rs1151471 and CFTR rs2283054 influenced the pharmacokinetics of 20(S)-PPD. In addition, several variations in ABCC2, ABCC4, CFTR, and NR1I2 had minor effects on the pharmacokinetics of CK. Quality of the best homology model of multidrug resistance protein 4 (MRP4) was assessed, and the ligand interaction plot showed the mode of interaction of CK with different MRP4 residues. Conlusion: ABCC4 rs1751034 and rs1189437 affected the pharmacokinetics of both CK and 20(S)-PPD. NR1I2 rs1464602 and rs2472682 were only associated with the pharmacokinetics of CK. Thus, these hereditary variances could partly explain the interindividual differences in the pharmacokinetics of CK.

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1

  • Gao, Shan;Guo, Tingting;Luo, Shuyu;Zhang, Yan;Ren, Zehao;Lang, Xiaona;Hu, Gaoyong;Zuo, Duo;Jia, Wenqing;Kong, Dexin;Yu, Haiyang;Qiu, Yuling
    • Biomolecules & Therapeutics
    • /
    • v.30 no.6
    • /
    • pp.553-561
    • /
    • 2022
  • Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.

Action Mechanism of Antiestrogens on Uterine Growth in Immature Rats (자궁세포 성장에 미치는 항에스트로젠제의 작용기전)

  • Lee, Jung-Bin;Yoon, Mi-Chung;Kim, Chang-Mee;Hong, Sa-Suk;Ryu, Kyung-Za
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.167-176
    • /
    • 1990
  • In the present study, we examined the effects of tamoxifen and LY117018 on various parameters for the estrogenic actions in order to understand the mechanism by which tamoxifen and LY117018 act on the uterine cells in 21-23 day old immature rats. Tamoxifen and LY117018 stimulated uterine weight and uterine contents of DNA, protein, and peroxidase activity in the absence of estradiol while inhibited above parameters in the presence of estradiol. Both cytosolic and nuclear progesterone receptors were increased by the treatment of tamoxifen and LY117018 as well as estradiol, but estradiol-induced increase in the progesterone receptors were reduced by the treatment of antiestrogens. These effects were enhanced by the multiple injections of antiestrogens. It seemed that tamoxifen was more agonistic than LY117018 but less antagonistic than LY117018, judged by their effects on various parameters for the estrogenic action. The affinities of estradiol, tamoxifen, and LY117018 for the estrogen receptor were $0.17{\pm}0.01nM(100%)$, $1.10{\pm}0.01nM(6.3%)$, and $0.23{\pm}0.01nM(77%)$, respectively. Furthermore, LY117018 was the competitive ligand for the estrogen receptor in dose-related manner but tamoxifen was not. Following estradiol treatment, nuclear estrogen receptor was sharply increased by 1 h, reaching the maximum by 16 h, while tamoxifen and LY117018 slightly increased nuclear estrogen receptor by 1 h and then decreased thereafter. It is therefore concluded that LY117018 is a competitive antagonist for the estrogen receptor with less estrogenic activity, compared to tamoxifen with low affinity to the estrogen receptor, and tamoxifen may act through other binding site than the estrogen receptor.

  • PDF

Effects of Mifepristone and Tamoxifen on Calcium Modulation in DU-145 Prostate Cancer Cells (DU-145 전립선 암세포에 있어서 mifepristone과 tamoxifen이 칼슘조절에 미치는 영향)

  • Kim, Yeo-Reum;Kim, Byeong-Gee
    • Journal of Life Science
    • /
    • v.20 no.9
    • /
    • pp.1324-1331
    • /
    • 2010
  • Mifepristone (MIF) and Tamoxifen (TAM) have been used in the treatment of prostate cancer and breast cancer for more than a decade. MIF can induce apoptosis in both AR-positive and negative prostate cancer cells. Because of its pleiotropic ligand-receptor properties, TAM exerts cytotoxic activity in estrogen (ER)-positive and various ER.negative cancer cells. However, the molecular mechanisms of these two substances are not yet clear. In the present work, we report that the cytotoxic effects of MIF and TAM are due to the modulation of intracellular $Ca^{2+}$ level in DU-145, androgen-insensitive cells. When the cells were treated with micromolar concentrations of either MIF or TAM, the growth and viability were significantly decreased in a dose- and time-dependent manner. The apoptosis induced by MIF or TAM was further proved and analyzed by confocal laser scanning microscopy (CLSM) and fluorescence-activated cell sorting (FACS). In the cells cultivated in a normal 1.5 mM $Ca^{2+}$ medium, both MIF and TAM also induced an increase of the intracellular $Ca^{2+}$ level in a dose-dependent fashion. Since a change in calcium level could not be found in cells of the $Ca^{2+}$-free medium, the increase of intracellular $Ca^{2+}$ level might be due to an increase in extracellular calcium uptake. Our results show that the apoptotic effect was more prominent in TAM treatment compared to MIF treatment in DU-145 cells. The above findings might be due to the difference in the uppermost pathways of apoptosis induced by either MIF or TAM. When we checked the level of procaspase-8 activation, TAM showed minor level of activation, as opposed to MIF, which exerted strong activation. In both treatments, the levels of anti-apoptotic protein Bcl-2 decreased, and pro-apoptotic protein Bax level increased more than 2-fold. The activation of caspase-3, a key protease enzyme in the downstream pathway of apoptosis, was much higher in the cells treated with TAM, compared to the MIF treatment. The overall apoptotic activity shown in the present work was closely related to intracellular $Ca^{2+}$ concentration levels. Therefore, the cytotoxic activity induced by MIF and TAM might have been due to intracellular calcium modulation.

Inhibitory Effects of Tenebrio molitor Larvae Ethanol Extract on RANKL-Induced Osteoclast Differentiation (갈색거저리 유충 에탄올 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Seo, Minchul;Baek, Minhee;Lee, Hwa Jeong;Shin, Yong Pyo;Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Hwang, Jae-Sam
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.983-989
    • /
    • 2020
  • The balance between bone-resorbing osteoclasts and bone-forming osteoblasts is key to bone health. An imbalance between osteoclasts and osteoblasts leads to various bone-related disorders, such as osteoporosis, osteomalacia, and osteopetrosis. However, the bone-resorption inhibitor drugs that are currently used may cause side effects. Natural substances have recently received much attention as therapeutic drugs for the treatment of bone health. This study was designed to determine the effect of Tenebrio molitor larvae ethanol extract (TME) on receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation. To measure the effect of TME on osteoclast differentiation, RAW264.7 cells were treated with RANKL with or without TME for 5 days. The tartrate-resistant acid phosphatase (TRAP) activity was significantly inhibited by treatment of TME without cytotoxicity up to 2 mg/ml. In addition, TME effectively suppressed expression of osteoclast differentiation-related marker genes and proteins such as TRAP, NFATc1, and c-Src. TME also significantly inhibited the p38 mitogen-activated protein kinase (MAPK) signaling pathway without affecting ERK and JNK signaling in RANKL-induced RAW264.7 cells. Consequently, we conclude that TME suppresses osteoclast differentiation by inhibiting RANKL-induced osteoclastogenic genes expression through the p38 MAPK signaling pathways. These results suggest that TME and its bioactive components are potential therapeutics for bone-related diseases such as osteoporosis.

Dietary corn resistant starch regulates intestinal morphology and barrier functions by activating the Notch signaling pathway of broilers

  • Zhang, Yingying;Liu, Yingsen;Li, Jiaolong;Xing, Tong;Jiang, Yun;Zhang, Lin;Gao, Feng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.2008-2020
    • /
    • 2020
  • Objective: This study was conducted to investigate the effects of dietary corn resistant starch (RS) on the intestinal morphology and barrier functions of broilers. Methods: A total of 320 one-day-old broilers were randomly allocated to 5 dietary treatments: one normal corn-soybean (NC) diet, one corn-soybean-based diet supplementation with 20% corn starch (CS), and 3 corn-soybean-based diets supplementation with 4%, 8%, and 12% corn resistant starch (RS) (identified as 4% RS, 8% RS, and 12% RS, respectively). Each group had eight replicates with eight broilers per replicate. After 21 days feeding, one bird with a body weight (BW) close to the average BW of their replicate was selected and slaughtered. The samples of duodenum, jejunum, ileum, caecum digesta, and blood were collected. Results: Birds fed 4% RS, 8% RS and 12% RS diets showed lower feed intake, BW gain, jejunal villus height (VH), duodenal crypt depth (CD), jejunal VH/CD ratio, duodenal goblet cell density as well as mucin1 mRNA expressions compared to the NC group, but showed higher concentrations of cecal acetic acid and butyric acid, percentage of jejunal proliferating cell nuclear antigen-positive cells and delta like canonical Notch ligand 4 (Dll4), and hes family bHLH transcription factor 1 mRNA expressions. However, there were no differences on the plasma diamine oxidase activity and D-lactic acid concentration among all groups. Conclusion: These findings suggested that RS could suppress intestinal morphology and barrier functions by activating Notch pathway and inhibiting the development of goblet cells, resulting in decreased mucins and tight junction mRNA expression.

The Cross-talk Mechanisms of Constitutive Androstane Receptor (CAR) in the Regulation of its Activity, Energy Metabolism, Cellular Proliferation and Apoptosis (Constitutive Androstane Receptor (CAR)의 활성, 에너지 대사 및 세포의 증식과 사멸의 조절에 대한 CAR의 cross-talk 기전)

  • Min, Gyesik
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.211-220
    • /
    • 2020
  • The activity of CAR can be regulated not only by ligand binding but also by phosphorylation of regulatory factors involved in extracellular signaling pathways, cross-talk interactions with transcription factors, and the recruitment, degradation, and expression of coactivators and corepressors. This regulation of CAR activity can in turn have effects on the control of diverse physiological homeostasis, including xenobiotic and energy metabolism, cellular proliferation, and apoptosis. CAR is phosphorylated by the ERK1/2 signaling pathway, which causes formation of a complex with Hsp-90 and CCRP, leading to its cytoplasmic retention, whereas phenobarbital inhibits ERK1/2, which causes dephosphorylation of the downstream signaling molecules, leading to the recruitment to CAR of the activated RACK-1/PP2A components for the dephosphorylation, nuclear translocation, and the transcriptional activation of CAR. Activated CAR cross-talks with FoxO1 to induce inhibition of its transcriptional activity and with PGC-1α to induce protein degradation by ubiquitination, resulting in the transcriptional suppression of PEPCK and G6Pase involved in gluconeogenesis. Regulation by CAR of lipid synthesis and oxidation is achieved by its functional cross-talks, respectively, with PPARγ through the degradation of PGC-1α to inhibit expression of the lipogenic genes and with PPARα through either the suppression of CPT-1 expression or the interaction with PGC-1α each to induce tissue-specific inhibition or stimulation of β-oxidation. Whereas CAR stimulates cellular proliferation by suppressing p21 expression through the inhibition of FoxO1 transcriptional activity and inducing cyclin D1 expression, it suppresses apoptosis by inhibiting the activities of MKK7 and JNK-1 through the expression of GADD45B. In conclusion, CAR is involved in the maintenance of homeostasis by regulating not only xenobiotic metabolism but also energy metabolism, cellular proliferation, and apoptosis through diverse cross-talk interactions with extracellular signaling pathways and intracellular regulatory factors.