Browse > Article
http://dx.doi.org/10.4062/biomolther.2022.023

Growth Inhibitory and Pro-Apoptotic Effects of Hirsuteine in Chronic Myeloid Leukemia Cells through Targeting Sphingosine Kinase 1  

Gao, Shan (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Guo, Tingting (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Luo, Shuyu (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Zhang, Yan (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Ren, Zehao (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Lang, Xiaona (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Hu, Gaoyong (State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine)
Zuo, Duo (Department of Clinical Laboratory, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University)
Jia, Wenqing (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Kong, Dexin (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Yu, Haiyang (State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine)
Qiu, Yuling (Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University)
Publication Information
Biomolecules & Therapeutics / v.30, no.6, 2022 , pp. 553-561 More about this Journal
Abstract
Chronic myeloid leukemia (CML) is a slowly progressing hematopoietic cell disorder. Sphingosine kinase 1 (SPHK1) plays established roles in tumor initiation, progression, and chemotherapy resistance in a wide range of cancers, including leukemia. However, small-molecule inhibitors targeting SPHK1 in CML still need to be developed. This study revealed the role of SPHK1 in CML and investigated the potential anti-leukemic activity of hirsuteine (HST), an indole alkaloid obtained from the oriental plant Uncaria rhynchophylla, in CML cells. These results suggest that SPHK1 is highly expressed in CML cells and that overexpression of SPHK1 represents poor clinical outcomes in CML patients. HST exposure led to G2/M phase arrest, cellular apoptosis, and downregulation of Cyclin B1 and CDC2 and cleavage of Caspase 3 and PARP in CML cells. HST shifted sphingolipid rheostat from sphingosine 1-phosphate (S1P) towards the ceramide coupled with a marked inhibition of SPHK1. Mechanistically, HST significantly blocked SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways. In addition, HST can be docked with residues of SPHK1 and shifts the SPHK1 melting curve, indicating the potential protein-ligand interactions between SPHK1 and HST in both CML cells. SPHK1 overexpression impaired apoptosis and proliferation of CML cells induced by HST alone. These results suggest that HST, which may serve as a novel and specific SPHK1 inhibitor, exerts anti-leukemic activity by inhibiting the SPHK1/S1P/S1PR1 and BCR-ABL/PI3K/Akt pathways in CML cells, thus conferring HST as a promising anti-leukemic drug for CML therapy in the future.
Keywords
Chronic myeloid leukemia; SPHK1; Hirsuteine; Sphingolipid rheostat; SPHK1/S1P/S1PR1; BCR-ABL/PI3K/Akt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Pitman, M. R. and Pitson, S. M. (2010) Inhibitors of the sphingosine kinase pathway as potential therapeutics. Curr. Cancer Drug Targets 10, 354-367.   DOI
2 Pitson, S. M., Moretti, P. A. B., Zebol, J. R., Lynn, H. E., Xia, P., Vadas, M. A. and Wattenberg, B. W. (2003) Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 22, 5491-5500.   DOI
3 Ren, S. Y., Xin, C. Y., Pfeilschifter, J. and Huwiler, A. (2010) A novel mode of action of the putative sphingosine kinase inhibitor 2-(phydroxyanilino)-4-(p-chlorophenyl) thiazole (SKI II): induction of lysosomal sphingosine kinase 1 degradation. Cell. Physiol. Biochem. 26, 97-104.   DOI
4 Sukocheva, O. A., Furuya, H., Ng, M. L., Friedemann, M., Menschikowski, M., Tarasov, V. V., Chubarev, V. N., Klochkov, S. G., Neganova, M. E., Mangoni, A. A., Aliev, G. and Bishayee, A. (2020) Sphingosine kinase and sphingosine-1-phosphate receptor signaling pathway in inflammatory gastrointestinal disease and cancers: a novel therapeutic target. Pharmacol. Ther. 207, 107464.   DOI
5 Huang, B. Y., Zeng, Y., Li, Y. J., Huang, X. J., Hu, N., Yao, N., Chen, M. F., Yang, Z. G., Chen, Z. S., Zhang, D. M. and Zeng, C. Q. (2017) Uncaria alkaloids reverse ABCB1-mediated cancer multidrug resistance. Int. J. Oncol. 51, 257-268.   DOI
6 Blaho, V. A. and Hla, T. (2014) An update on the biology of sphingosine 1-phosphate receptors. J. Lipid Res. 55, 1596-1608.   DOI
7 Codini, M., Garcia-Gil, M. and Albi, E. (2021) Cholesterol and sphingolipid enriched lipid rafts as therapeutic targets in cancer. Int. J. Mol. Sci. 22, 726.   DOI
8 Cortes, J. and Lang, F. B. (2021) Third-line therapy for chronic myeloid leukemia: current status and future directions. J. Hematol. Oncol. 14, 44.   DOI
9 Ding, T. D., Zhi, Y., Xie, W. L., Yao, Q. Q. and Liu, B. (2021) Rational design of SphK inhibitors using crystal structures aided by computer. Eur. J. Med. Chem. 213, 113164.   DOI
10 Hannun, Y. A. and Obeid, L. M. (2018) Author correction: sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol. 19, 673.   DOI
11 Kushida, H., Matsumoto, T. and Ikarashi, Y. (2021) Properties, pharmacology, and pharmacokinetics of active indole and oxindole alkaloids in uncaria hook. Front. Pharmacol. 12, 688670.   DOI
12 Li, Q. F., Huang, W. R., Duan, H. F., Wang, H., Wu, C. T. and Wang, L. S. (2007) Sphingosine kinase-1 mediates BCR/ABL-induced upregulation of Mcl-1 in chronic myeloid leukemia cells. Oncogene 26, 7904-7908.   DOI
13 Liu, H. W., Chen, Q., Lu, D., Pang, X., Yin, S. S., Wang, K. L., Wang, R., Yang, S. S., Zhang, Y., Qiu, Y. L., Wang, T. and Yu, H. Y. (2020) HTBPI, an active phenanthroindolizidine alkaloid, inhibits liver tumorigenesis by targeting Akt. FASEB J. 34, 12255-12268.   DOI
14 Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A. and Hassan, M. I. (2020) Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega 5, 14720-14729.   DOI
15 Amir, M. and Javed, S. (2021) A review on the therapeutic role of TKIs in case of CML in combination with epigenetic drugs. Front. Genet. 12, 742802.   DOI
16 Companioni, O., Mir, C., Garcia-Mayea, Y. and LLeonart, M. E. (2021) Targeting sphingolipids for cancer therapy. Front. Oncol. 11, 745092.   DOI
17 Green, C. D., Maceyka, M., Cowart, L. A. and Spiegel, S. (2021) Sphingolipids in metabolic disease: the good, the bad, and the unknown. Cell Metab. 33, 1293-1306.   DOI
18 Lion, T. (2011) SP 108 resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Eur. J. Cancer 47, S3.   DOI
19 Mohd Sairazi, N. S. and Sirajudeen, K. N. S. (2020) Natural products and their bioactive compounds: neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020, 6565396.
20 Patmanathan, S. N., Wang, W., Yap, L. F., Herr, D. R. and Paterson, I. C. (2017) Mechanisms of sphingosine 1-phosphate receptor signalling in cancer. Cell. Signal. 34, 66-75.   DOI
21 Zheng, X. J., Li, W., Ren, L. W., Liu, J. Y., Pang, X. C., Chen, X. P., Kang, D., Wang, J. H. and Du, G. H. (2019) The sphingosine kinase-1/sphingosine-1-phosphate axis in cancer: potential target for anticancer therapy. Pharmacol. Ther. 195, 85-99.   DOI
22 Qi, W., Yue, S. J., Sun, J. H., Simpkins, J. W., Zhang, L. and Yuan, D. (2014) Alkaloids from the hook-bearing branch of Uncaria rhynchophylla and their neuroprotective effects against glutamate-induced HT22 cell death. J. Asian Nat. Prod. Res. 16, 876-883.   DOI
23 Velazquez, F. N., Hernandez-Corbacho, M., Trayssac, M., Stith, J. L., Bonica, J., Jean, B., Pulkoski-Gross, M. J., Carroll, B. L., Salama, M. F., Hannun, Y. A. and Snider, A. J. (2021) Bioactive sphingolipids: advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell. Signal. 79, 109875.   DOI
24 Yin, S. S., Yang, S. S., Luo, Y. M., Lu, J., Hu, G. Y., Wang, K. L., Shao, Y. Y., Zhou, S. Y., Koo, S., Qiu, Y. L., Wang, T. and Yu, H. Y. (2021) Cyclin-dependent kinase 1 as a potential target for lycorine against hepatocellular carcinoma. Biochem. Pharmacol. 193, 114806.   DOI
25 Lupino, L., Perry, T., Margielewska, S., Hollows, R., Ibrahim, M., Care, M., Allegood, J., Tooze, R., Sabbadini, R., Reynolds, G., Bicknell, R., Rudzki, Z., Lin, Hock. Y., Zanetto, U., Wei, W., Simmons, W., Spiegel, S., Woodman, C. B. J., Rowe, M., Vrzalikova, K. and Murray, P. G. (2019) Sphingosine-1-phosphate signalling drives an angiogenic transcriptional programme in diffuse large B cell lymphoma. Leukemia 33, 2884-2897.   DOI
26 Wilson, B. A. P., Thornburg, C. C., Henrich, C. J., Grkovic, T. and O'Keefe, B. R. (2020) Creating and screening natural product libraries. Nat. Prod. Rep. 37, 893-918.   DOI
27 Yin, S. S., Qiu, Y. L., Jin, C. Y., Wang, R., Wu, S., Liu, H. W., Koo, S., Han, L. F., Zhang, Y., Gao, X. M., Pang, X., Wang, T. and Yu, H. Y. (2019) 7-Deoxynarciclasine shows promising antitumor efficacy by targeting Akt against hepatocellular carcinoma. Int. J. Cancer 145, 3334-3346.   DOI
28 Yu, H. Y., Yin, S. S., Zhou, S. Y., Shao, Y. Y., Sun, J. C., Pang, X., Han, L. F., Zhang, Y., Gao, X. M., Jin, C. Y., Qiu, Y. L. and Wang, T. (2018) Magnolin promotes autophagy and cell cycle arrest via blocking LIF/Stat3/Mcl-1 axis in human colorectal cancers. Cell Death Dis. 9, 702   DOI
29 Zhang, L., Chen, T., Dou, Y. H., Zhang, S. L., Liu, H. Y., Khishignyam, T., Li, X. F., Zuo, D., Zhang, Z., Jin, M. H., Wang, R., Qiu, Y. L., Zhong, Y. X. and Kong, D. X. (2019) Atorvastatin exerts antileukemia activity via inhibiting mevalonate-YAP axis in K562 and HL60 cells. Front. Oncol. 9, 1032.   DOI
30 Zhou, Q. X., Chen, Y. L., Chen, X., Zhao, W. N., Zhong, Y. X., Wang, R., Jin, M. H., Qiu, Y. L. and Kong, D. X. (2016) In vitro antileukemia activity of ZSTK474 on K562 and multidrug resistant K562/A02 cells. Int. J. Biol. Sci. 12, 631-638.   DOI
31 Mojtahedi, H., Yazdanpanah, N. and Rezaei, N. (2021) Chronic myeloid leukemia stem cells: targeting therapeutic implications. Stem Cell Res. Ther. 12, 603.   DOI
32 Osman, A. E. G. and Deininger, M. W. (2021) Chronic myeloid leukemia: modern therapies, current challenges and future directions. Blood Rev. 49, 100825.   DOI