• Title/Summary/Keyword: Lifting simulation

Search Result 94, Processing Time 0.025 seconds

A Numerical Study on the Flow around a Rudder behind Low Speed Full Ship

  • Lee, Young-Gill;Yu, Jin-Won;Kang, Bong-Han;Pak, Kyung-Ryeung
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.2
    • /
    • pp.41-52
    • /
    • 2008
  • The development of a high-lift rudder is needed because low speed full ships such as the VLCC(Very Large Crude oil Carrier) have difficulty for obtaining enough lifting force from a common rudder. The rudder of a ship is generally positioned behind the hull and propeller. Therefore, rudder design should consider the interactions between hull, propeller, and rudder. In the present study, the FLUENT code and body fitted mesh systems generated by the GRIDGEN program are adopted for the numerical simulations of flow characteristics around a rudder that is interacting with hull and propeller. Sliding mesh model(SMM) is adopted to analyze the interaction between propeller rotation and wake flow behind hull. Several numerical simulations are performed to compare the interactions such as hull-rudder, propeller-rudder, and hull-propeller-rudder. Also, we consider relationships between the interactions. The results of present numerical simulations show the variation of flow characteristics by the interaction between hull, propeller, and rudder, and these results are compared with an existing experimental result. The present study demonstrates that numerical simulations can be used effectively in the design of high-lift rudder behind low speed full ship.

Alternative Evaluation Model for Tower Crane Operation Plan in Modular Construction - Focusing on Modular Unit Installation and Finishing works - (모듈러 건축 타워크레인 운용 계획의 대안 평가 모델 - 유닛 설치 및 마감공사를 중심으로 -)

  • Kim, Joo Ho;Park, Moonseo;Lee, Hyun-Soo;Hyun, Hosang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.50-60
    • /
    • 2018
  • Recently, modular construction method has been widely applied to projects with repetitive processes including dormitory, the residential facility, and the hotel construction due to reduced labor input and shortened construction schedule. Generally, about 40% of total on-site construction cost excluding unit installation cost, is put on exterior finishing work, and thus management of finishing work is deemed important in maintaining the targeted schedule and cost. Since limited equipment is shared so that subsequent activities are not affected while carrying out on-site installation and finishing work, lifting plan becomes more important for modular projects with greater portion of finishing work load. In this regard, tower crane operation plan may take the form of a single cycle or multiple cycles in which equipment efficiency can be affected. However, difficulties exist in evaluating alternatives to tower crane operation plans supporting unit installation and finishing work. Therefore, this study aims to evaluate the alternative of tower crane operation method according to the cyclic period setting in modular building site to determine the effect on T/C uptime and process by parameterizing lifting time for unit and exterior finishing material, lift cycle for unit and exterior finishing material and time required for finishing work. Accordingly, this study develops a simulation model that can increase the tower crane efficiency by controlling the work speed. An academic contribution of this study is to suggest a resource leveling method applying the concept of lifting cycle, and further is expected to be managerially used as a basis for an alternative evaluation of equipment plan.

Structural Modeling and Characteristic Analysis of Container Handling System (컨테이너 적재 시스템의 구조 모델링 및 특성 해석)

  • Kim, Young-Sang;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • A CHS(Container Handling System) is a system to load and to unload ISO 2000 or ISO 4000 standard containers which is widely used for various industrial transport purpose. A new light type of CHS is introduced in this paper, in order to reduce weight of cargos and to give the convenience in cargo loading and unloading without additional lifting equipments. The structural models of this system are created to assemble the smooth integration of system and to interface the each composing units with the specification of truck chassis to be mounted. These models are applied to find the suitable design parameters under the condition of force restrictions of each units. Finally, the stability of this system are investigated by analyzing the dynamic simulation using Visual NASTRAN 4D, and it could be recommend the good design parameters for the manufacturing purpose.

A study on Energy Saving Hydraulic System Using Hydraulic Transformer (유압 트랜스포머를 이용한 에너지 절감형 유압시스템에 관한 기초연구)

  • Lee, Min-Su;Ahn, Kyoung-Kwan;Cho, Yong-Rae;Jo, Woo-Keun;Hung, Ho Triet
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.917-922
    • /
    • 2008
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. Based on the nominal model derived from mathematical model, the feedback type two-degree-of-freedom controller is designed and implemented. From simulation results, the disturbances including nonlinear friction torque, leakage flow and load force can be compensated and good positioning accuracy is obtained. It show that the proposed controller is effective.

  • PDF

The Development of Simulation Model for Calculating Hoisting Time of Double-Cage Construction Lift in Supertall Building Construction (Double-Cage 건설용 리프트의 양중시간 산정을 위한 시뮬레이션 모델 개발)

  • Kim, Wansoub;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.64-65
    • /
    • 2016
  • According to the recent increase in the height of supertall buildings, construction lift became one of most important equipment for vertical transportation of resources. However, increase in lifting load during peak time in which the resources are concentrated often causes a risk of construction delay. This study suggests a concept of Double-Cage construction lift, which is a lift with two cages attached together allowing transportation of resources on two consecutive work floors simultaneously. The aim of this study is to present a simulation model suitable for calculating hoisting time of Double-Cage construction lift. The proposed model is expected to be utilized when applying Double-cage construction lift for its efficient operation and management.

  • PDF

Mathematical Models That Underlie Computer Simulation of the Hook and Line Fishing Gears

  • Gabruk, Victor Ivanovich;Kudakaev, Vasilii Vladimirovich
    • Ocean and Polar Research
    • /
    • v.41 no.1
    • /
    • pp.19-34
    • /
    • 2019
  • The present study obtained universal mathematical models of all elements and characteristics regarding hook and line fishing systems. To describe the hook and line fishing systems on site we used three kinds of coordinate systems: the earth based coordinate system, natural coordinate system, and flow (velocity) coordinate system. Mathematical models presented in this article allow us to define the shape of the fishing gear, the tension of the rope at different points, hydrodynamic resistance, diameter of the hook's wire, immersion depth of the fishing hooks, distance from hooks to the ground and the required lifting force of the floats. These models allow for the performance of computer simulations regarding any kinds of hook and line gears in still water or water where flow occurs.

A study of Energy Saving Hydraulic Cylinder System Using Hydraulic Transformer (유압 트랜스포머를 이용한 유압 실린더의 에너지 절감에 관한 연구)

  • Ahn, Kyoung-Kwan;Lee, Min-Su;Cho, Yong-Rae;Yoon, Ju-Hyeon;Jo, Woo-Keun;Yoon, Hong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1075-1080
    • /
    • 2007
  • In order to reduce energy consumption, secondary controlled system has been applied to many types of equipments. In lifting equipments or press machines using hydraulic cylinder, a hydraulic transformer is used as a control component instead of a valve for motion control and a component for recovering potential energy of load. The transformer is a combination of a variable displacement pump/motor as a secondary controlled element and a fixed displacement pump/motor. In this paper the effect of transformer is studied. Multiple closed loop controllers with displacement feedback of variable pump/motor, speed feedback and position feedback of cylinder are used. The efficiency and energy consumption when cylinder is driven up and down is calculated by simulation. Simulation results show that considerable energy saving is achieved by choosing load ratio, circuit type and supply pressure.

  • PDF

Development of the Winch System Model for HILS of the Winch Control System (해상크레인용 윈치 제어시스템 HILS 구축을 위한 윈치 시스템 모델 개발)

  • Lim, Chae-Og;Shin, Sung-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.937-946
    • /
    • 2021
  • The floating crane is used to lift the heavyweight on the ocean. The floating crane has a winch system for lifting the heavyweight and the system is controlled by the winch control system. The heavyweight is lifted safely by control of the winch control system. Before the make the control system and controller, there are many restricted conditions to test and validate at design and development steps. In order to solve the problems, commonly use the HILS (Hardware-In-the-Loop-Simulation). HILS is the method of test and validation for the hardware control system. It can be composed of the control system in hardware with surrounding environments which is a virtual model. In this study, we developed the winch system model for HILS of the 150t winch control system in a floating crane. Through this simulation and winch model, it can be applied to HILS for the winch control system.

3-D Inverse Dynamics Analysis of the Effect of Maximum Muscle Force Capacities on a Musculoskeletal System

  • Han, Kap-Soo;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1774-1779
    • /
    • 2014
  • It is known that muscle strength of human body can alter or deteriorate as aging. In this study, we present an inverse dynamics simulation to investigate the effect of muscle strength on performing the daily activities. A 3D musculoskeletal model developed in this study includes several segments of whole body, long and short muscles, ligaments and disc stiffness. Five daily activities such as standing, flexion, finger tip to floor, standing lift close and lifting flexed were simulated with varying the maximum muscle force capacities (MFC) of each muscle fascicles from 30 to $90N/cm^2$ with an increment of $30N/cm^2$. In the result, no solution can be obtained for finger tip to floor and lifting flexed with $30N/cm^2$. Even though the solution was available for standing lift close activity in case of $30N/cm^2$ capacity, many of muscle fascicles hit the upper bound of muscle strength which means that it is not physiologically possible to perform the acvities in reality. For lifing flexed, even the case of $60N/cm^2$ capaciy, represents the moderate healthy people, was not able to find the solutions, showing that 18 muscles among 258 muscle fascicles reached 100% of muscle capacity. The estimated results imply that people who have low muscle strength such as elders or rehabilitation patients were required higher muscle work to perform and maintain the same daily activities than healthy one.

Simulation Analysis on Triple Collision between Wrecker, Towed Car and Driving Car (견인차-피견인차-주행차량의 3중 추돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Kim, Eu-Gene;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4100-4107
    • /
    • 2010
  • The wrecker truck of lift type is used to move damaged car in accident spot or to move illegal vehicle in towaway zone toward pound.. This special vehicle drives by lifting front or rear side of car with the driving type of towed car. Each car is modelled with CATIA and is simulated with FEM analysis program ANSYS. This study analyzes how dangerous is the triple collision among the wrecker-towed car-driving car as comparing with the usual collision accident with cars. It is studied how responsible is the towed car in case of crashing its back side by driving car. The influence on the driving angle of towed car by lifting wrecker is also considered.