DOI QR코드

DOI QR Code

Alternative Evaluation Model for Tower Crane Operation Plan in Modular Construction - Focusing on Modular Unit Installation and Finishing works -

모듈러 건축 타워크레인 운용 계획의 대안 평가 모델 - 유닛 설치 및 마감공사를 중심으로 -

  • Kim, Joo Ho (Department of Architectural and Architectural Engineering, Seoul National University) ;
  • Park, Moonseo (Department of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Hyun-Soo (Department of Architectural and Architectural Engineering, Seoul National University) ;
  • Hyun, Hosang (Department of Architectural and Architectural Engineering, Seoul National University)
  • Received : 2017.11.02
  • Accepted : 2017.12.18
  • Published : 2018.03.31

Abstract

Recently, modular construction method has been widely applied to projects with repetitive processes including dormitory, the residential facility, and the hotel construction due to reduced labor input and shortened construction schedule. Generally, about 40% of total on-site construction cost excluding unit installation cost, is put on exterior finishing work, and thus management of finishing work is deemed important in maintaining the targeted schedule and cost. Since limited equipment is shared so that subsequent activities are not affected while carrying out on-site installation and finishing work, lifting plan becomes more important for modular projects with greater portion of finishing work load. In this regard, tower crane operation plan may take the form of a single cycle or multiple cycles in which equipment efficiency can be affected. However, difficulties exist in evaluating alternatives to tower crane operation plans supporting unit installation and finishing work. Therefore, this study aims to evaluate the alternative of tower crane operation method according to the cyclic period setting in modular building site to determine the effect on T/C uptime and process by parameterizing lifting time for unit and exterior finishing material, lift cycle for unit and exterior finishing material and time required for finishing work. Accordingly, this study develops a simulation model that can increase the tower crane efficiency by controlling the work speed. An academic contribution of this study is to suggest a resource leveling method applying the concept of lifting cycle, and further is expected to be managerially used as a basis for an alternative evaluation of equipment plan.

최근 인력자원 투입량 감소 및 공기단축이 가능한 모듈러 건축공법은 반복 공정이 많은 기숙사, 주거시설, 호텔 공사 등에 다양하게 적용되고 있다. 모듈러 건축공법은 유닛 설치비용을 제외한 현장 공사비에서 외장 마감공사 비용의 비중은 약 40%를 차지하며, 마감공사는 목표공기와 비용을 유지하는데 주요한 역할을 한다. 모듈러 현장에서 유닛 설치 및 마감공사 수행을 위해 한정된 장비가 후속 액티비티에 영향을 주지 않도록 공유되어야 하며 현장 마감 비중이 커지는 모듈러 프로젝트일수록 공정관리에서 양중 계획은 매우 중요하기 때문이다. 이와 같은 T/C 운용 계획은 단일 사이클 또는 다중 사이클의 형태를 가지게 되며 사이클 주기 조율은 장비효율을 높일 수 있다. 그러나 유닛 설치 및 마감공사를 지원하기 위한 T/C 운용 계획의 대안을 평가하는데 어려움이 있다. 따라서 본 연구는 모듈러 건축 현장에서 T/C 운용의 사이클 주기 설정에 따른 운용방식의 대안을 평가하기 위해 유닛 양중 시간 및 주기, 외장재 양중 시간, 마감 작업 소요시간을 변수화하여 T/C 가동시간과 공정에 주는 영향을 파악한다. 이러한 목적을 달성하기 위해 현장에서 이루어지는 작업 프로세스 분석을 바탕으로 작업 속도를 조절하여 T/C 효율을 증대시킬 수 있는 시뮬레이션 모델을 개발한다. 본 연구는 양중 사이클 개념을 적용한 자원 평준화 방법을 제시함으로써 학술적 기여가 있으며 실무적으로 현장관리자에게 장비 계획의 대안 선택을 위한 기초자료로서 활용될 수 있을 것이다.

Keywords

References

  1. Ahn, B. J., Yang, J. Y., Baik, J. K., and Kim, J. J. (2003). "Developing a Transportation and Procurement System for Curtain-Wall Materials focused on JIT Management." Journal of the Architectural Institute of Korea Structure & Construction, 19(8), pp. 153-162.
  2. Alvanchi, A., Azimi, R., Lee, S., AbouRizk, S. M., and Zubick, P. (2011). "Off-site construction planning using discrete event simulation." Journal of architectural engineering, 18(2), pp. 114-122. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000055
  3. Boyd, N., Khalfan, M. M., and Maqsood, T. (2012). "Off-site construction of apartment buildings." Journal of architectural engineering, 19(1), pp. 51-57. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000091
  4. Chehayeb, N. N., and AbouRizk, S. M. (1998). "Simulation-based scheduling with continuous activity relationships." Journal of Construction Engineering and Management, 124(2), pp. 107-115. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:2(107)
  5. Cho, C. Y., Cho, M. Y., and Shin, Y. S. (2012). "Prediction Model for Hoisting Times of Tower Crane using Discrete-Event Simulation in High-rise Building Construction." Journal of the Architectural Institute of Korea Structure & Construction, 28(1), pp. 151-158. https://doi.org/10.5659/JAIK_SC.2012.28.1.151
  6. Generalova, E. M., Generalov, V. P., and Kuznetsova, A. A. (2016). "Modular buildings in modern construction." Procedia Engineering, 153, pp. 167-172. https://doi.org/10.1016/j.proeng.2016.08.098
  7. Halpin, D. W. (1973). "An investigation of the use of simulation networks for modeling construction operations." Ph.D. Thesis, University of Illinois at Urbana-Champaign, IL, USA.
  8. Han, S. H., Hasan, S., Bouferguene, A., Al-Hussein, M., and Kosa, J. (2014). "Utilization of 3D visualization of mobile crane operations for modular construction on-site assembly." Journal of Management in Engineering, 31(5), 04014080. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000317
  9. Kamali, M., and Hewage, K. (2016). "Life cycle performance of modular buildings: A critical review." Renewable and Sustainable Energy Reviews, 62, pp. 1171-1183. https://doi.org/10.1016/j.rser.2016.05.031
  10. Kim, K. J. (2000). "A Study for the Implementation of Self-controlling Resource Model in the Simulation of Heavy Construction Operations." Journal of The Korean Society of Civil Engineers, 20(4D), pp. 389-402.
  11. Kim, S. (2002). Business simulation. Hankyungsa.
  12. Kim, S., Kim, S., Jean, J., and An, S. H. (2016). "Optimization of T/C Lifting Plan using Dependency Structure Matrix (DSM)." Journal of the Korea Institute of Building Construction, 16(2), pp. 151-159. https://doi.org/10.5345/JKIBC.2016.16.2.151
  13. Kim, S. W., and Choe, M. K. (2010). "A Study on the Lifting Progress Character Tributary for the Construction Materials Moving Method." Journal of the Regional Association of Architectural Institute of Korea, 12(1), pp. 199-206.
  14. Korea Institute of Civil Engineering and Building Technology (KICT). (2016). 2017 Standard of Construction Estimate, Seoul: Korea Institute of Civil Engineering and Building Technology.
  15. Lawson, R. M., Ogden, R. G., and Bergin, R. (2011). "Application of modular construction in high-rise buildings." Journal of architectural engineering, 18(2), pp. 148-154. https://doi.org/10.1061/(ASCE)AE.1943-5568.0000057
  16. Lawson, R., and Ogden, R. (2010). "Sustainability and process benefits of modular construction." Proceedings of the 18th CIB World Building Congress, TG57-Special Track, Salford, UK.
  17. Lee, H. S., Chae, H., and Jang, M. H. (2002). "Development of Tower Crane Planning Process in High-rise Building Projects." Journal of the Architectural Institute of Korea Structure & Construction, 18(6), pp. 119-126.
  18. Lee, K. B., Kim, K. R., Shin, D. W., and Cha, H. S. (2011). "A proposal for optimizing unit modular system process to improve efficiency in off-site manufacture, transportation and on-site installation." Korean Journal of Construction Engineering and Management, KICEM, 12(6), pp. 14-21. https://doi.org/10.6106/KJCEM.2011.12.6.14
  19. Leung, A. W., and Tam, C. (1999). "Models for assessing hoisting times of tower cranes." Journal of Construction Engineering and Management, 125(6), pp. 385-391. https://doi.org/10.1061/(ASCE)0733-9364(1999)125:6(385)
  20. Li, H., Chan, N. K., and Skitmore, M. (2012). "The use of virtual prototyping to rehearse the sequence of construction work involving mobile cranes." Construction Innovation, 12(4), pp. 429-446. https://doi.org/10.1108/14714171211272207
  21. Martinez, J. C. (1996). "STROBOSCOPE : State and Resource Based Simulation of Construction Processes." Ph.D. Thesis, The University of Michigan, Ann Arbor, MI, USA.
  22. Modular Building Institute (MBI). (2015). Permanent modualr construction 2015 annual report.
  23. Mohsen, O. M., Knytl, P. J., Abdulaal, B., Olearczyk, J. , and Al-Hussein, M. (2008). "Simulation of modular building construction." Proceedings of the 40th Conference on Winter Simulation.
  24. Neelamkavil, J. (2009). "Automation in the prefab and modular construction industry." The 26th Symposium on Construction Robotics ISARC.
  25. Olearczyk, J., Al-Hussein, M., and Bouferguene, A. (2014). "Evolution of the crane selection and on-site utilization process for modular construction multilifts." Automation in Construction, 43, pp. 59-72. https://doi.org/10.1016/j.autcon.2014.03.015
  26. Olearczyk, J., Al-Hussein, M., Bouferguene, A., and Telyas, A. (2009). "Virtual construction automation for modular assembly operations." Construction Research Congress 2009 : Building a Sustainable Future.
  27. Pritsker, A. A. B. (1986). Introduction to stimulation and Slam II. West Lafayette, Indiana: Systems Publishing Corp.
  28. Shin, S. H., and Kim, K. H. (2009). "Hoist Scheduling Chart and Lifting Load Leveling Method for Applying JIT(Just-In-Time) in Construction." Journal of the Architectural Institute of Korea Structure & Construction, 25(2), pp. 149-157.
  29. Smith, R. E. (2011). Prefab architecture: A guide to modular design and construction : John Wiley & Sons.
  30. Tantisevi, K., and Akinci, B. (2008). "Simulation-based identification of possible locations for mobile cranes on construction sites." Journal of computing in civil engineering, 22(1), pp. 21-30. https://doi.org/10.1061/(ASCE)0887-3801(2008)22:1(21)
  31. Tubaileh, A. (2016). "Working time optimal planning of construction site served by a single tower crane." Journal of Mechanical Science and Technology, 30(6), pp. 2793-2804. https://doi.org/10.1007/s12206-016-0346-8
  32. Yang, K., Lee, H. S., Park, M., Jung, M., and Hwang, S. (2013). "A study of the tower crane hoisting time estimation simulation model with climate element for the high-rise building construction." Korean Journal of Construction Engineering and Management, KICEM, 14(2), pp. 96-107. https://doi.org/10.6106/KJCEM.2013.14.2.096