• Title/Summary/Keyword: Lifting Work

Search Result 218, Processing Time 0.022 seconds

A Fundamental Research to Safety at Tower Crane Major Work (타워크레인 주요 작업의 안전성에 관한 기초 연구)

  • Lee, Sung-Ho;Joo, Jin-Kyu;Lee, Goon-Jae;Kim, Sun-Kuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.151-152
    • /
    • 2011
  • As recent construction projects aim to build higher and bigger buildings, lifting operation is getting increasingly important in construction sites. Accordingly, as tower cranes get higher and higher, disasters involving tower cranes are also on the rise. According to occupational incident statistics of the Korea Occupational Health & Safety Agency (KOHSA), most of such incidents occur in installation, dismantling and climbing phases of tower crane. Therefore, it is essential to develop preventative measures to secure safety of tower crane operations, with critical focus on installation, dismantling and climbing of tower crane. Hence, this research attempts to measure criticality of key risk factors in installation, dismantling and climbing phases of tower crane on construction site and propose necessary safety measures. As a result, conclusions herein will contribute to minimize disasters and incidents involving tower cranes in high-rise building construction sites.

  • PDF

Measurement and Strategies for Dynamic Stability During Locomotion on a Slippery Surface (미끄럼 바닥에서 안정성 유지를 위한 균형 전략과 평가방법)

  • Kim, Tack-Hoon;Yoon, Doo-Sik
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.97-108
    • /
    • 2003
  • Slipping during various kinds of movement often leads to potentially dangerous incidents of falling. The purpose of this paper was to review some of the research performed in the field including such topics as rating scales for balance, kinematics and kinetics of slipping, adaptation to slippery conditions, postural and balance control, and protective movement during falling. Controlling slipping and fall injuries requires a multifaceted approach. Environmental conditions (state of floor surface, tidiness, lighting, etc), work task (walking, carrying, pushing, lifting, etc), and human behavior (anticipation of hazards, adaptation to risks, risk taking, etc) must be accounted for in the assessment of slip and fall-related risks. Future directions of research must deal with modeling of basic tribophysical, biomechanical, and postural control process involved in slipping and falling.

  • PDF

Loose Coupling Approach of CFD with a Free-Wake Panel Method for Rotorcraft Applications

  • Lee, Jae-Won;Oh, Se-Jong;Yee, Kwan-Jung;Kim, Sang-Hun;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • As a first step toward a complete CFD-CSD coupling for helicopter rotor load analysis, the present study attempts to loosely couple a CFD code with a source-double panel method. The far-field wake effects were calculated by a time-marching free vortex wake method and were implemented into the CFD module via field velocity approach. Unlike the lifting line method, the air loads correction process is not trivial for the source-doublet panel method. The air loads correction process between the source-doublet method and CFD is newly suggested in this work and the computation results are validated against available data for well-known hovering flight conditions.

Design of the helicopter rotors by the lifting surface theory (양력면이론(揚力面理論)에 의(依)한 헬리콥터 로터의 설계(設計))

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.5
    • /
    • pp.51-57
    • /
    • 1985
  • The object of this study is in the development of the computer program to predict the performance of rotor in hovering by getting the aerodynamic load acting on blade. For this work the vortex theory was chosen among the aerodynamic theories, blade was replaced by planar vortex panels, and prescribed wake for the wake geometry was selected and then represented by vortex lattices. To get the aerodynamic load on blade, flow was assumed to be incompressible, irrotational and steady, and the surface boundary condition of inviscid flow was used as boundary condition. Then the relationships between this load and flight condition and blade geometry were examined.

  • PDF

Relationship Between Compressive Force at L5/S1 and Erector Spinae Muscle Electromyography (L5/S1에 걸리는 부하염력과 척추기립근 근전도의 상관관계 분석)

  • Chang, Seong-Rok
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.4
    • /
    • pp.103-108
    • /
    • 1995
  • This study was performed to investigate a relationship between a biomechanical analysis of compressive force at L5/S1 and electromyographic analysis of erector spinae muscle during lifting task. In the experiment, isometric contractions at 25, 50, 75, 100%MVC for short duration and sustained isometric contractions at 50%MVC were performed. For muscle recruitment patten and compressive force analysis, rectified EMG amplitudes analysis and computerized biomechanical analysis were used. To achieve data, angles of neck, shoulder, elbow, wrist, hip, knee, ankle and length of body segments were measured. Results shows that trends of initial EMG rectified amplitude were similar to those of biomechanical calculation value and for sustained isometric contraction at 50%MVC EMG rectified amplitude of erector spinae muscle after 40seconds was increased up to level of 75%MVC. Based on the results of this study, biomechanical analysis should be supplemented considering muscle fatigue, and it is also suggested that work-rest cycle critera and the evaluation of back-pain injuries should include muscle fatigue.

  • PDF

The Development of Simulation Model for Calculating Hoisting Time of Double-Cage Construction Lift in Supertall Building Construction (Double-Cage 건설용 리프트의 양중시간 산정을 위한 시뮬레이션 모델 개발)

  • Kim, Wansoub;Lee, Dongmin;Cho, Hunhee;Kang, Kyung-In
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.64-65
    • /
    • 2016
  • According to the recent increase in the height of supertall buildings, construction lift became one of most important equipment for vertical transportation of resources. However, increase in lifting load during peak time in which the resources are concentrated often causes a risk of construction delay. This study suggests a concept of Double-Cage construction lift, which is a lift with two cages attached together allowing transportation of resources on two consecutive work floors simultaneously. The aim of this study is to present a simulation model suitable for calculating hoisting time of Double-Cage construction lift. The proposed model is expected to be utilized when applying Double-cage construction lift for its efficient operation and management.

  • PDF

Recent Trend of Block Division in Shipbuilding (최근의 Block Division 경향)

  • Ahn Hyo Sang
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.165-170
    • /
    • 2005
  • The weight of a ship depends on the size of the ship. Normal lightweight of a ship is over 10,000 tons. So it is inevitable to divide a ship into about more than hundreds of lumps. Each of lumps is called as a block in shipbuilding. The sizes of blocks are decided by a yard's facilities. Among them lifting cranes are most decisive facilities. By block's size the productivity of a yard is decided very much. So it is very important to have a proper block division during shipbuilding. This paper refers to the recent trend of block division among yards. This paper would give an idea how to decide boundaries of blocks. Block division also decides both quality of a ship and work volume of it. These days the block erection method is changed dramatically due to use sea barge mounted crane for erection of a grand ring block. This paper explains the new trend of block division in shipbuilding.

  • PDF

Numerical Analysis of Orthotropic Composite Propellers (직교이방성 복합소재 프로펠러 수치해석)

  • Kim, Ji-Hye;Ahn, Byoung-Kwon;Ruy, Won-Sun
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.377-386
    • /
    • 2019
  • Flexible composite propellers have a relatively large deformation under heavy loading conditions. Thus, it is necessary to accurately predict the deformation of the blade through a fluid-structure interaction analysis. In this work, we present an LST-FEM method to predict the deformation of a flexible composite propeller. Here, we adopt an FEM solver called OOFEM to carry out a structural analysis with an orthotropic linear elastic composite material. In addition, we examine the influence of the lamination direction on the deformation of the flexible composite propeller.

A Basic Study of Crane Trajectory Distance Calculation for Sustainable PC Members Erection of Large Logistic Building (대형물류센터 PC부재 양중을 위한 크레인 궤적거리 산정 기초 연구)

  • Lim, Jeeyoung;Oh, Jinhyuk;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.77-78
    • /
    • 2023
  • As large logistics buildings have high floor heights and long spans, these buildings are designed as PC structures, and large cranes are used to lift PC members. PC erection planning can generally cause errors depending on the field engineer's experience. To solve this problem, a basic analysis method is needed to establish a systematic PC member erection plan. Crane work can be minimized if the trajectory is easily and quickly calculated according to the location of the crane and applied to the site. Therefore, the objective of this study is a basic study of crane trajectory distance calculation for sustainable PC members erection of large logistic building. In this study, a crawler crane commonly used for lifting PC members is limited. The trajectory distance for the PC erection plan was automatically calculated using the algorithm.

  • PDF

Analysis of Conceptual Models and State-of-the-Art Technologies for the Automation of Telescoping Work in Horizontal Tower Cranes (수평형 타워크레인 텔레스코핑 작업의 자동화를 위한 개념 모델 및 요소기술 분석)

  • Lee, Sang-Ho;Kim, Young-Suk;Lee, Jeong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5D
    • /
    • pp.705-717
    • /
    • 2011
  • The number of horizontal tower cranes, major hoisting machineries for lifting approximately 50% of entire materials in construction projects, is rapidly increasing, but a number of accidents related to the tower cranes are being continuously occurred in construction sites as well. In particular, telescoping works in the horizontal tower cranes have showed the greatest safety concerns such as falls and collapses. It is due to the fact that tasks inserting a new mast in the space made after raising telescoping cage by fluid pressure and ascending it to the required height in the telescoping works include a series of dangerous factors in safety aspects, and might cause very serious and unexpected accidents in construction sites. The primary objective of this research is to propose two conceptual models for automating the telescoping work in horizontal tower crane and conduct their technical feasibility analyses. In this study, a design concept, a position control system using hydraulic cylinders is suggested as a better alternative for automating the telescoping work. Its potential safety improvement rate compared to the conventional method is also analyzed and presented in this study.