• Title/Summary/Keyword: Lifting Model

Search Result 168, Processing Time 0.026 seconds

Neuro-Fuzzy Approach for Predicting EMG Magnitude of Trunk Muscles (뉴로-퍼지 시스템에 의한 몸통근육군의 EMG 크기 예측 방법론)

  • Lee, Uk-Gi
    • Journal of the Ergonomics Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.87-99
    • /
    • 2000
  • This study aims to examine a fuzzy logic-based human expert EMG prediction model (FLHEPM) for predicting electromyographic responses of trunk muscles due to manual lifting based on two task (control) variables. The FLHEPM utilizes two variables as inputs and ten muscle activities as outputs. As the results, the lifting task variables could be represented with the fuzzy membership functions. This provides flexibility to combine different scales of model variables in order to design the EMG prediction system. In model development, it was possible to generate the initial fuzzy rules using the neural network, but not all the rules were appropriate (87% correct ratio). With regard to the model precision, the EMG signals could be predicted with reasonable accuracy that the model shows mean absolute error of 8.43% ranging from 4.97% to 13.16% and mean absolute difference of 6.4% ranging from 2.88% to 11.59%. However, the model prediction accuracy is limited by use of only two task variables which were available for this study (out of five proposed task variables). Ultimately, the neuro-fuzzy approach utilizing all five variables to predict either the EMG activities or the spinal loading due to dynamic lifting tasks should be developed.

  • PDF

Development of a Model for Physiological Safe Work Load from a Model of Metabolic Energy for Manual Materials Handling Tasks (에너지 대사량을 고려한 인력물자취급시의 생리적 안전 작업하중 모델 개발)

  • Kim Hong-Ki
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.27 no.3
    • /
    • pp.90-96
    • /
    • 2004
  • The objective of this study was to develop a model for safe work load based on a physiological model of metabolic energy of manual material handling tasks. Fifteen male subjects voluntarily participated in this study. Lifting activities with four different weights, 0, 8, 16, 24kg, and four different working frequencies (2, 5, 8, 11 lifts/min) for a lifting range from floor to the knuckle height of 76cm were considered. Oxygen consumption rates and heart rates were measured during the performance of sixteen different lifting activities. Simplified predictive equations for estimating the oxygen consumption rate and the heart rate were developed. The oxygen consumption rate and the heart rate could be expressed as a function of task variables; frequency and the weight of the load, and a personal variable, body weight, and their interactions. The coefficients of determination ($r^2$) of the model were 0.9777 and 0.9784, respectively, for the oxygen consumption rate and the heart rate. The model of oxygen consumption rate was modified to estimate the work load for the given oxygen consumption rate. The overall absolute percent errors of the validation of this equation for work load with the original data set was 39.03%. The overall absolute percent errors were much larger than this for the two models based on the US population. The models for the oxygen consumption rate and for the work load developed in this study work better than the two models based on the US population. However, without considering the biomechanical approach, the developed model for the work load and the two US models are not recommended to estimate the work loads for low frequent lifting activities.

Design and Prototyping of Lifting Devices for Manhole Cover using Structural Analysis and 3D Printing (3D 프린팅과 구조해석을 이용한 맨홀의 부양장치 설계 및 제작)

  • Lee, Hyoungwook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.648-654
    • /
    • 2018
  • In order to maintain manholes installed on the road, the manhole should be easy to open and close. Manhole covers under harsh conditions require that they can be lifted when attempting to open the manhole because the frame and cover are stuck and difficult to open and close. In this study, the design of a lifting mechanism was carried out to improve and integrate the locking type manhole. The mechanism of the locking manhole is that when the bolt located at the center is turned, the hub connected with the bolt descends, and the hook connected to the hub is rotated. The end of the hook is hooked to the manhole frame. The auxiliary device was installed on the hook so that the manhole cover can be lifted. The structure was designed to endure about 300kg of lifting force based on 70% of the yield stress of the hook to perform lifting function. The shape design was performed through the structural analysis using the finite element method. First, the basic design was performed with the simplified 2-dimensional model and the attachment position and shape were designed through the 3-dimensional model. In order to find out the structural problems of the designed shape, the scale downed model was fabricated through 3D printing and confirmed that the lifting function worked. Finally, it was confirmed that both the locking and the average lifting of about 6.1 mm can be done by applying the lifting mechanism through the machining and applying it to the existing locking manhole.

Non-chemical Risk Assessment for Lifting and Low Back Pain Based on Bayesian Threshold Models

  • Pandalai, Sudha P.;Wheeler, Matthew W.;Lu, Ming-Lun
    • Safety and Health at Work
    • /
    • v.8 no.2
    • /
    • pp.206-211
    • /
    • 2017
  • Background: Self-reported low back pain (LBP) has been evaluated in relation to material handling lifting tasks, but little research has focused on relating quantifiable stressors to LBP at the individual level. The National Institute for Occupational Safety and Health (NIOSH) Composite Lifting Index (CLI) has been used to quantify stressors for lifting tasks. A chemical exposure can be readily used as an exposure metric or stressor for chemical risk assessment (RA). Defining and quantifying lifting nonchemical stressors and related adverse responses is more difficult. Stressor-response models appropriate for CLI and LBP associations do not easily fit in common chemical RA modeling techniques (e.g., Benchmark Dose methods), so different approaches were tried. Methods: This work used prospective data from 138 manufacturing workers to consider the linkage of the occupational stressor of material lifting to LBP. The final model used a Bayesian random threshold approach to estimate the probability of an increase in LBP as a threshold step function. Results: Using maximal and mean CLI values, a significant increase in the probability of LBP for values above 1.5 was found. Conclusion: A risk of LBP associated with CLI values > 1.5 existed in this worker population. The relevance for other populations requires further study.

A computation model for Resource-based Lifting loads of the lift-cars for super high-rise buildings (초고층 건축물 리프트카 양중계획수립을 위한 자원기반의 양중부하 산정 모형)

  • Han, Choong-Hee;Lee, Jun-Bok;Won, Seo-Kyung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.5
    • /
    • pp.135-143
    • /
    • 2012
  • Constructing super-tall buildings is significantly different from constructing general ones in every technological and managerial aspects. Especially lift-car operations planning and management is one of core parts among various management techniques required during the course of the whole construction process of the super-tall buildings because vertical movements of physical resources enormously affect the efficiency of the construction processes. However, discrepancy between lifting plans and actual lifting operations causes serious efficiency problems. As an effort to solve the problem, this research suggests an improved method of estimating resource-based lifting load. The computing model developed as a result of this research facilitates more accurate computation of the total operation time and the maximum lifting capacity of the lift-cars. Further, this research can be developed as a decision support system for the total lift-car operations management.

Experimental Studies on Hydraulic Lifting of Solid-liquid Two-phase Flow

  • Park, Yong-Chan;Yoon, Chi-Ho;Lee, Dong-Kil;Kwon, Seok-Ki
    • Ocean and Polar Research
    • /
    • v.26 no.4
    • /
    • pp.647-653
    • /
    • 2004
  • Experimental studies with 4.3m and enlarged 30m in height have been conducted to investigate the flow characteristics of solid-liquid mixture in a lifting pipe and to acquire the design data for sea tests that will be performed in the future. From the results, it was observed that the more the discharged volume fraction and the solid diameter increase, the more the hydraulic gradient increases. Also, the more the diameter of the lifting pipe increases, the smaller the friction loss, and consequently, the less pressure drop and hydraulic gradient. From the enlarged hydraulic pumping experiments, it was shown that the results of the experiments were matched with those of the numerical model previously developed. On the bases of these studies, we plan to conduct further experiments and validate the hydraulic pumping model.

Occupational Lifting Tasks and Retinal Detachment in Non-Myopics and Myopics: Extended Analysis of a Case-Control Study

  • Mattioli, Stefano;Curti, Stefania;De Fazio, Rocco;Mt Cooke, Robin;Zanardi, Francesca;Bonfiglioli, Roberta;Farioli, Andrea;Violante, Francesco S.
    • Safety and Health at Work
    • /
    • v.3 no.1
    • /
    • pp.52-57
    • /
    • 2012
  • Objectives: Lifting heavy weights involves the Valsalva manoeuvre, which leads to intraocular pressure spikes. We used data from a case-control study to further investigate the hypothesis that occupational lifting is a risk factor for retinal detachment. Methods: The study population included 48 cases (patients operated for retinal detachment) and 84 controls (outpatients attending an eye clinic). The odds ratios (OR) of idiopathic retinal detachment were estimated with a logistic regression model (adjusted for age, sex and body mass index). Three indexes were used to examine exposure to lifting; 1) maximum load lifted, 2) average weekly lifting, 3) lifelong cumulative lifting. Results: For all indexes, the most exposed subjects showed an increased risk of retinal detachment compared with the unexposed (index 1: OR 3.57, 95% confidence interval [CI] 1.21-10.48; index 2: OR 3.24, 95% CI 1.32-7.97; index 3: OR 2.23, 95% CI 1.27-8.74) and dose-response relationships were apparent. Conclusion: These results reinforce the hypothesis that heavy occupational lifting may be a relevant risk factor for retinal detachment.

The Case Study on the Erection Construction Method for Soft Retractable Roof Structures (연성개폐 지붕구조물 Erection 시공법에 관한 사례 연구)

  • Park, Keum-Sung;Kim, Hyung-Do;Kwak, Myong-Keun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.101-108
    • /
    • 2016
  • Lifting plan in the large spacial structure is an important factor influencing the efficiency and economy of the construction process. The purpose of this study was deriving the requirements for lifting techniques as the basic research in the double spoke wheel roof structure construction. In the lift up erection method, management plan of the interference error in the column and outer-ring was needed that occur during lifting roof structure. In the bent erection method, material usage reduction plan was required by the structural design of the temporary bent. In the hybrid erection method, lifting plan was needed that minimizes weather condition and crane usage. All lifting techniques were required Value Engineering model for reduction of cost and construction period.

Hydraulic Cylinder Design of Lifting Pump Mounting and Structural Safety Estimation of Mounting using Multi-body Dynamics (다물체 동역학을 이용한 양광펌프 거치대의 유압 실린더 설계 및 구조 안전성 평가)

  • Oh, Jae-Won;Min, Cheon-Hong;Lee, Chang-Ho;Hong, Sup;Kim, Hyung-Woo;Yeu, Tae-Kyung;Bae, Dae-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.120-127
    • /
    • 2015
  • When a deep-seabed lifting pump is kept this device has bending and deformation in the axis due to its long length(8m). These influences can be caused a breakdown. Therefore, a mounting must be developed to keep the lifting pump safe. This paper discusses the hydraulic cylinder design of the lifting pump and structural safety estimation of the mounting using SBD(simulation-based design). The multi-body dynamic simulation method is used, which has been used in the automotive, structural, ship building, and robotics industries. In this study, the position and diameter of the hydraulic cylinder were determined based on the results of the strokes and buckling loads for the design positions of the hydraulic cylinder. A structural dynamic model of the mounting system was constructed using the determined design values, and the structural safety was evaluated using this dynamic model. According to these results, this system has a sufficient safety factor to manufacture.

A Study on the Interaction between Hull-Propeller and a High-Lifting Horn-type Rudder (선체-프로펠러와 고양력 혼타의 상호작용에 관한 연구)

  • Kim, Doo-Dong;Lee, Young-Gill
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.4
    • /
    • pp.346-356
    • /
    • 2011
  • Rudder is to be located in extremely complicated flows generated and disturbed behind a hull and a propeller in operation. In order to estimate the rudder efficiency, it is quite important to investigate the disturbed flows due to the interaction under the hull-propeller and rudder condition. The purpose of the present research is to investigate the interaction between the hull-propeller and a high-lifting horn-type rudder through both numerical computations and experiments. A horn-type rudder implementing the Coanda effect of USB (Upper Surface Blowing) type is selected for its high efficiency of lifting force, and a 1/85 scaled model of 47K PC(Product Carrier) is manufactured for the purpose of the model test. The forces acting on the rudder during the experiment are measured using a three-component force gauge. Both cases are investigated in the hull-propeller-rudder condition and rudder open-water condition, which confirms that the flows generated under the former condition is considerably different from that of the latter condition.