• Title/Summary/Keyword: Lift characteristics

Search Result 816, Processing Time 0.027 seconds

Life Estimation of Elevator Wire Ropes Using Accelerated Degradation Test Data (가속열화시험 데이터를 활용한 엘리베이터 와이어로프 수명 예측)

  • Kim, Seung Ho;Kim, Sang Boo;Kim, Sung Ho;Ham, Sung Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.997-1004
    • /
    • 2017
  • The life of elevator wire ropes is one of the most important characteristics of an elevator, which is closely related to the safety of users and its maintenance policy. It is not cost effective to measure the lifetime of elevator wire ropes during their use. In this study, the life estimation of elevator wire ropes (8x19W-IWRC) is considered using accelerated degradation test data. A bending fatigue tester is used to perform the accelerated degradation tests, incorporating the acceleration factor of tensile force. Assuming that the life of wire ropes is log-normally distributed, two life estimation methods are suggested and their results are compared. The first method estimates the life of wire ropes utilizing the accelerated life model with pseudo lives obtained from a linear regression model. The second method estimates the life using a logistic model based on failure probability.

A Feasibility Study on Optimal Lifting Planning in the High-rise Apartment Building Construction (공동주택공사의 건설용 리프트를 이용한 양중계획 타당성 분석)

  • Lee, Jun-Bok;Han, Choong-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.9 no.3
    • /
    • pp.185-193
    • /
    • 2008
  • In order to improve work efficiency in high-rise apartment building construction, it is required to establish the major criteria and practical method for selecting the construction lifts. It is necessary to analyze work efficiency and economic feasibility depending on speed, size and capacity of lifting equipment and characteristics of construction projects. The purpose of this research is to develop the fundamental process and information for selecting the lift in order to plan and manage the material lifting and laborers' vertical transporting in the high-rise apartment building projects more effectively. In order to satisfy the objective of the research, work performance of the lifting machines with different speed and carrying capacity is analyzed under the practical constraints. In addition, potential economic evaluation is conducted. One of the significant findings of the research is that the mid-speed lift shows 43% improvement in work efficiency compared with the low-speed lift. The results of the research will be used as the basis for developing the further optimal lifting management system.

Unsteady Aerodynamic Characteristics of an Non-Synchronous Heaving and Pitching Airfoil Part 2 : Pitching Amplitude (비동기 히브 및 피치 운동에 따른 에어포일 비정상 공력 특성 Part 2 : 피치 진동운동 진폭)

  • Seunghwan Ji;Cheoulheui Han
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.63-71
    • /
    • 2023
  • In the present study, the effect of pitch amplitude on the unsteady aerodynamics of a NACA 0012 airfoil is numerically investigated. When the frequency ratio is equal to 1.0, airfoil pitching with 20 and 30 degrees of pitch amplitude shows almost small lift generation, but the lift is significantly increased in case of 10-degree pitch amplitude. When the frequency is 0.5, the lift coefficients have large values, and the lift increases with a decrease in pitch amplitude. When the frequency ratio is 1.0, the airfoil generates large thrust. The thrust decreases as the pitch amplitude decreases. When the frequency ratio is 0.5, drag is generated for the 30-degree pitch amplitude, but the thrust is generated for 10-degree pitch amplitude. In future, the effect of heave amplitude on the unsteady aerodynamics of the airfoil will be studied.

Numerical Simulation on Drag and Lift Coefficient around Ship Rudder using Computational Fluid Dynamics (전산 유체 역학을 이용한 선박 방향타 주변의 항력 및 양력 계수에 대한 수치 시뮬레이션)

  • Bon-Guk Koo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.97-102
    • /
    • 2023
  • Numerical simulations have been performed to investigate the hydrodynamic characteristics of the rudder since they play an important role in naval architecture fields. Although some values such as hydrodynamics forces can be measured easily in the towing tanks, it is difficult to obtain the detailed information of the flow fields such as pressure distribution, velocity distribution, vortex generation from experiments. In the present study, the effects of hydrodynamic coefficients and Reynolds number acting on the rudder were studied by using Computational Fluid Dynamics(CFD). Ansys fluent, one of commercial CFD solvers, solves the Navier-Stokes equations and the k-epsilon turbulence model is selected for the viscous model to solve RANS equations. At first, drag coefficients and lift coefficient for different angle of attack are obtained by using a CFD commercial code for KCS rudder. Secondly, the 2-D lift coefficients and drag coefficients are compared with 3-D coefficients at the same conditions. Thirdly, the effects of Reynolds number on the hydrodynamic forces are investigated.

An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport (퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구)

  • Choi, Seung Jea;Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.246-256
    • /
    • 2018
  • In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.

Structural and Aerodynamic Characteristics of A Flapping Wing with Changeable Camber Using A Smart Material (스마트 재료를 이용한 캠버 변화가 가능한 플래핑 날개 구조 및 공력 특성)

  • Kim, Dae-Kwan;Kim, Hong-Il;Kwon, Ki-Jung;Han, Jae-Hung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.390-396
    • /
    • 2007
  • In the present study, we have developed a flapping wing using a smart material to mimic the nature's flyers, birds. The wing consists of composite frames, a flexible PVC film and a surface actuator, and the main wing motions are flapping, twisting and camber motions. To change the camber, a Macro-Fiber Composite(MFC) is used as the surface actuator, and it's structural response is analyzed by the use of piezoelectric-thermal analogy. To measure the lift and thrust simultaneously, a test stand consisting of two load cells is manufactured. Some aerodynamic tests are performed for the wing in a subsonic wind tunnel to evaluate the dynamic characteristics. Experimental results show that the main lift is mostly affected by the forward velocity and the pitch angle, but the thrust is mostly affected by the flapping frequency. The effect of the camber generated by the MFC actuator can produce the sufficient lift increment of up to 24.4% in static condition and 20.8% in dynamic condition.

Basic Study on Lift-off Characteristics of Non-Premixed Flames of Methane-Air Jet in a Tube (관 내부 메탄-공기 분류 비예혼합 화염의 부상 특성 기초 연구)

  • Kim, Go-Tae;Kim, Nam-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.431-438
    • /
    • 2011
  • Flame lift-off conditions determine the operating conditions of burners. It is known that a flame can be lifted when the Schmidt number (Sc), which is the ratio of the dynamic viscosity to the mass diffusivity, is greater than unity. In this study, the flame lift-off characteristics of non-premixed flames of propane (Sc > 1) and methane (Sc < 1) in a coaxial outer air tube were experimentally compared. The experimental results indicated that stable lifted flames could be obtained even when Sc < 1 in a confined air tube. On the basis of the results of a simple numerical analysis, it was confirmed that a new flame stabilization mechanism exists in the tube. A velocity field is preferentially developed upstream of the flame, and it results in a new stabilization condition. This result can be very useful in explaining the stabilization of the flames of ordinary burners in which a flame is produced in a confined space.

Planar Type Flexible Piezoelectric Thin Film Energy Harvester Using Laser Lift-off

  • Noh, Myoung-Sub;Kang, Min-Gyu;Yoon, Seok Jin;Kang, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.489.2-489.2
    • /
    • 2014
  • The planar type flexible piezoelectric energy harvesters (PEH) based on PbZr0.52Ti0.48O3 (PZT) thin films on the flexible substrates are demonstrated to convert mechanical energy to electrical energy. The planar type energy harvesters have been realized, which have an electrode pair on the PZT thin films. The PZT thin films were deposited on double side polished sapphire substrates using conventional RF-magnetron sputtering. The PZT thin films on the sapphire substrates were transferred by PDMS stamp with laser lift-off (LLO) process. KrF excimer laser (wavelength: 248nm) were used for the LLO process. The PDMS stamp was attached to the top of the PZT thin films and the excimer laser induced onto back side of the sapphire substrate to detach the thin films. The detached thin films on the PDMS stamp transferred to adhesive layer coated on the flexible polyimide substrate. Structural properties of the PZT thin films were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). To measure piezoelectric power generation characteristics, Au/Cr inter digital electrode (IDE) was formed on the PZT thin films using the e-beam evaporation. The ferroelectric and piezoelectric properties were measured by a ferroelectric test system (Precision Premier-II) and piezoelectric force microscopy (PFM), respectively. The output signals of the flexible PEHs were evaluated by electrometer (6517A, Keithley). In the result, the transferred PZT thin films showed the ferroelectric and piezoelectric characteristics without electrical degradation and the fabricated flexible PEHs generated an AC-type output power electrical energy during periodically bending and releasing motion. We expect that the flexible PEHs based on laser transferred PZT thin film is able to be applied on self-powered electronic devices in wireless sensor networks technologies. Also, it has a lot of potential for high performance flexible piezoelectric energy harvester.

  • PDF

Wind Tunnel Test Study on the Wings of WIG Ship (WIG선의 날개에 대한 풍동실험 고찰)

  • Kim, S.K.;Suh, S.B.;Lee, D.H.;Kim, K.E.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 1997
  • This paper presents the results of 3rd wind tunnel test for the wings of WIG R/C test models, 'Hanjin-1' & 'Hanjin-2'. We made 'Hanjin-1' in last May 1995 and had a success in test flight. And in order to grasp the aerodynamic characteristics of wings in ground effect, the measurements of lift and drag were carried out for the various kinds of wing. It was shown that lift and lift-drag ratio increase with decrease of the clearance, but the feature was considerably depended on the shape of wing section. In this case we select the three kind of wing. section, and then compare their characteristics especially for a stability in longitudinal motion. They are NACA6409 for 'Hanjin-1' and the two kinds of DHMTU for ekranoplans of Russia. Experimental results show that the pitching moments of DHMTU wing sections are smaller than NACA6409.

  • PDF