• Title/Summary/Keyword: Lift/Drag Ratio

Search Result 216, Processing Time 0.04 seconds

Couette-Poiseuille flow based non-linear flow over a square cylinder near plane wall

  • Bhatt, Rajesh;Maiti, Dilip K.;Alam, Md. Mahbub;Rehman, S.
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.331-341
    • /
    • 2018
  • A numerical study on the flow over a square cylinder in the vicinity of a wall is conducted for different Couette-Poiseuille-based non-uniform flow with the non-dimensional pressure gradient P varying from 0 to 5. The non-dimensional gap ratio L (=$H^{\ast}/a^{\ast}$) is changed from 0.1 to 2, where $H^{\ast}$ is gap height between the cylinder and wall, and $a^{\ast}$ is the cylinder width. The governing equations are solved numerically through finite volume method based on SIMPLE algorithm on a staggered grid system. Both P and L have a substantial influence on the flow structure, time-mean drag coefficient ${\bar{C}}_D$, fluctuating (rms) lift coefficient ($C_L{^{\prime}}$), and Strouhal number St. The changes in P and L leads to four distinct flow regimes (I, II, III and IV). Following the flow structure change, the ${\bar{C}}_D$, $C_L{^{\prime}}$, and St all vary greatly with the change in L and/or P. The ${\bar{C}}_D$ and $C_L{^{\prime}}$ both grow with increasing P and/or L. The St increases with P for a given L, being less sensitive to L for a smaller P (< 2) and more sensitive to L for a larger P (> 2). A strong relationship is observed between the flow regimes and the values of ${\bar{C}}_D$, $C_L{^{\prime}}$ and St. An increase in P affects the pressure distribution more on the top surface than on bottom surface while an increase in L does the opposite.

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder

  • Kim, Ju-Min;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.1
    • /
    • pp.27-37
    • /
    • 2009
  • In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates $0{\leq}{\alpha}{\leq}5$ (the rotational rate ex is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For $0{\leq}{\alpha}{\leq}1.8$, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower ${\alpha}$ than the Newtonian case. At ${\alpha}$=5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.

Numerical Investigation of Flow-pattern and Flow-induced Noise for Two Staggered Circular Cylinders in Cross-flow by LBM

  • Kim, Jeong-Whan;Oh, Sae-Kyung;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-93
    • /
    • 2008
  • The flowfield behind two cylinders and flow-induced noise generated from the cylinders in various arrangement are numerically investigated based on the finite difference lattice Boltzmann model with 21 velocity bits. which is introduced a flexible specific heat ${\gamma}$ to simulate diatomic gases like air. In an isolated cylinder with two type of mesh. some flow parameters such as Strouhal number $S_t$ and acoustic pressure ${\Delta}p$ simulated from the solution are given and quantitatively compared with those provided the previous works. The effects of the center-to-center pitch ratio $L_{cc}/d=2.0$ in staggered circular cylinders as shown in Fig. 1 and angles of incidence ${\alpha}=30^{\circ}(T_{cc}/d=0.5)$, $45^{\circ}(T_{cc}/d =0.707)$ and $60^{\circ}\;(T_{cc}/d=0.866)$, respectively, are studied. Our analysis focuses on the small-scale instabilities of vortex shedding, which occurs in staggered arrangement. With the results of drag $C_d$ and lift $C_l$ coefficients and vorticity contours. the mechanisms of the interference phenomenon and its interaction with the two-dimensional vortical structures are present in the flowfields under $Re\;{\le}\;200$. The results show that we successively capture very small pressure fluctuations, with the same frequency of vortex shedding, much smaller than the whole pressure fluctuation around pairs of circular cylinders. The upstream cylinder behaves like an isolated single cylinder, while the downstream one experiences wake-induced flutter. It is expected that, therefore, the relative position of the downstream cylinder has significant effects on the flow-induce noise, hydrodynamic force and vortex shedding characteristics of the cylinders.

Study on Optimal Design of Wind Turbine Blade Airfoil and Its Application (풍력발전기 블레이드의 에어포일 최적 설계 및 그 적용 연구)

  • Sun, Min-Young;Kim, Dong-Yong;Lim, Jae-Kyoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.5
    • /
    • pp.465-475
    • /
    • 2012
  • This study was carried out with two goals. One was the development of a model of a wind turbine blade airfoil and the other was the application of this folding blade. In general, in large-sized (MW) wind turbines, damage is prevented because of the use of a pitch control system. On the other hand, pitch control is not performed in small wind turbines since equipment costs and maintenance costs are high, and therefore, the blade will cause serious damage. The wind turbine proposed in this study does not require maintenance, and the blades do not break during high winds because they are folded in accordance with changes in the wind speed. But generators are not cut-out, while maintaining a constant angle will continue to produce. The focus of this study, the wind turbine is continued by folding blade system in strong winds and gusts without stopping production.

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.

Numerical Study on the Side-Wind Aerodynamic Forces of Chambered 3-D Thin-Plate Rigid-Body Model (캠버가 있는 3차원 박판 강체 모형의 측풍 공기력에 대한 수치 연구)

  • Shin, Jong-Hyeon;Chang, Se-Myong;Moon, Byung-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.97-108
    • /
    • 2015
  • In the design of sailing yachts, para-glider, or high-sky wind power, etc., the analysis of side-wind aerodynamic forces exerted on a cambered 3-D model is very important to predict the performance of various machinery systems. To understand the essential flow physics around the three-dimensional shape, simplified rigid-body models are proposed in this study. Four parameters such as free stream velocity, angle of attack, aspect ratio, and camber are considered as the independent variables. Lift and drag coefficients are computed with CFD technique using ANSYS-CFX, and the results with the visualization of post-processed flow fields are analyzed in the viewpoint of fluid dynamics.

Aerodynamic Optimization of Helicopter Blade Planform (I): Design Optimization Techniques (헬리콥터 블레이드 플랜폼 공력 최적설계(I): 최적설계 기법)

  • Kim, Chang-Joo;Park, Soo-Hyung;O, Seon-Gu;Kim, Seung-Ho;Jeong, Gi-Hun;Kim, Seung-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1049-1059
    • /
    • 2010
  • This paper treats the aerodynamic optimization of the blade planform for helicopters. The blade shapes, which should be determined during the threedimensional aerodynamic configuration design step, are defined and are parameterized using the B$\acute{e}$zier curves. This research focuses on the design approaches generally adopted by industries and or research institutes using their own experiences and know-hows for the parameterization and for the definition of design constraints. The hover figure of merit and the equivalent lift-to-drag ratio for the forward flight are used to define the objective function. The resultant nonlinear programming (NLP) problem is solved using the sequential quadratic programming (SQP) method. The applications show the present method can design the important planform shapes such as the airfoil distribution, twist and chord variations in the efficient manner.

Study on Tip-Vortex Cavitation and Its Noise Characteristics - Effects of Surface Roughness - (타원형날개끝 캐비테이션과 유기소음 특성연구 - 표면거칠기의 영향 -)

  • B.S. Hyun;C.M. Lee;H.S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.84-93
    • /
    • 1994
  • The purpose of present study is to investigate the surface roughness on tip-vortex cavitation and its induced noise, emanating from an elliptic wing of NACA 0012 section. Roughness elements of $200{\mu}m$ are applied to the 10% portion of wing tip, and then, the wing tip as well as the leading edge. It is shown from cavitation observation that the cavitation inception is first visible at about half chord downstream of wing tip for most experimental conditions, and developed into the tip-vortex cavitation and finally the fully developed cavitation as cavitation number is decreased. Acoustic noise generated by a tip-vortex cavitation has its frequency range of 3 kHz to 50 kHz, while the fully-developed cavitation at lower cavitation number induces a broad band spectrum. It is also shown that, when the roughness elements are applied to the wing tip and the leading edge, the cavitation characteristics and its induced noise are improved. Moreover, it is appeared that the condition at which the rough surface is at pressure side gives a better result. although its lift-drag ratio is reduced.

  • PDF

Reynolds number and scale effects on aerodynamic properties of streamlined bridge decks

  • Ma, Tingting;Feng, Chaotian
    • Wind and Structures
    • /
    • v.34 no.4
    • /
    • pp.355-369
    • /
    • 2022
  • Section model test, as the most commonly used method to evaluate the aerostatic and aeroelastic performances of long-span bridges, may be carried out under different conditions of incoming wind speed, geometric scale and wind tunnel facilities, which may lead to potential Reynolds number (Re) effect, model scaling effect and wind tunnel scale effect, respectively. The Re effect and scale effect on aerostatic force coefficients and aeroelastic characteristics of streamlined bridge decks were investigated via 1:100 and 1:60 scale section model tests. The influence of auxiliary facilities was further investigated by comparative tests between a bare deck section and the deck section with auxiliary facilities. The force measurement results over a Re region from about 1×105 to 4×105 indicate that the drag coefficients of both deck sections show obvious Re effect, while the pitching moment coefficients have weak Re dependence. The lift coefficients of the smaller scale models have more significant Re effect. Comparative tests of different scale models under the same Re number indicate that the static force coefficients have obvious scale effect, which is even more prominent than the Re effect. Additionally, the scale effect induced by lower model length to wind tunnel height ratio may produce static force coefficients with smaller absolute values, which may be less conservative for structural design. The results with respect to flutter stability indicate that the aerodynamic-damping-related flutter derivatives 𝘈*2 and 𝐴*1𝐻*3 have opposite scale effect, which makes the overall scale effect on critical flutter wind speed greatly weakened. The most significant scale effect on critical flutter wind speed occurs at +3° wind angle of attack, which makes the small-scale section models give conservative predictions.

Effects of Wing Twist on Longitudinal Stability of BWB UCAV (날개의 비틀림이 동체-날개 융합익형 무인전투기의 종안정성에 미치는 영향에 대한 연구)

  • Ban, Seokhyun;Lee, Jihyeong;Kim, Sangwook;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2018
  • Lambda wing type Unmanned Combat Aerial Vehicle(UCAV) which adopts Blended Wing Body(BWB) has relatively less drag and more stealth performance than conventional aircraft. However, Pitching moment is rapidly increased at a specific angle of attack affected by leading edge vortex due to leading edge sweep angle. Wind tunnel testing and numerical analysis were carried out with UCAV 1303 configuration on condition of 50 m/s of flow velocity, $-4^{\circ}{\sim}28^{\circ}$ of the range of angle-of-attack. The effect of wing twist for longitudinal stability at the various angles of attack was verified in this study. When negative twist is applied on the wing, Pitch-break was onset at higher angle of attack due to delayed flow separation on outboard of the wing. On the other hand, pitch-break was onset at lower angle of attack and lift-to-drag ratio was increased when positive twist is applied on the wing.