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Abstract

In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in
flows past a single rotating cylinder for rotational rates 0 < <5 (the rotational rate o is defined by the ratio
of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding
has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to
develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder
and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with
the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing
our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For 0<a<1.8, the
frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly
decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow dis-
appears at lower o than the Newtonian case. At =35, the relationship between the frequency of vortex
shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around
Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that
the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for vis-

coelastic fluids than Newtonian fluids.
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1. Introduction

The flow instabilities of viscoelastic fluids have been
observed in some creeping flows, e.g., unsteady flows over
critical Weissenberg number in a contraction geometry
(Rothstein and McKinley, 1999; Nigen and Walters, 2002),
wake instability around a confined cylinder (McKinley er
al., 1993), ‘fibril-formation’ instability in a filament
stretching rheometer (Spiegelberg and McKinley, 1996)
and elastic turbulence (Groisman and Steinberg, 2000).
Many researchers have attempted to analyze the physics
behind these phenomena (McKinley ef al., 1996; Graham,
2003). From the aspect of numerical scheme, several tran-
sient FEM (Finite Element Method)-based or FVM (Finite
Volume Method)-based schemes have been proposed to
capture the fully transient viscoelastic flow phenomena: 6-
method (Saramito and Piau, 1994), Runge-Kutta 4™ order
formulation (Caola ef al., 2001), TG (Taylor-Galerkin)
(Carew et al., 1993), and SIMPLE-series algorithm for
FVM (Alves et al., 2001). However, it is still challenging
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to numerically predict the instabilities of viscoelastic flows.
Transient schemes have also merit such that huge coupled
equations can be divided into small sub-problems at each
time step. Thus, these methods can also be applied to
obtain steady solutions {(Carew ef al., 1993; Caola et al.,
2001; Alves et al., 2001).

Viscoelasticity can affect vortex dynamics in high Rey-
nolds number flows, e.g., turbulent drag reduction has been
extensively studied (Sureshkumar et al., 1997, Dim-
itropoulos et al., 1998; Min et al., 2001; Min et al., 2003).
Viscoelasticity can also play an important role in laminar
vortex shedding (Oliveira, 2001; Sahin and Owens, 2004;
Oliveira and Miranda, 2005) which is generated at lower
Reynolds number than turbulent flow. The wake instabil-
ities behind a stationary/rotating cylinder are still active
research areas even for Newtonian fluid. Flow past a sta-
tionary cylinder has been considered to be a benchmark
problem in conventional computational fluid dynamics and
the diverse vortex modes can be generated in stationary
cylinder problems as a function of Reynolds number (Re).
The detailed discussion and review can be found in Wil-
liamson (1996): the flow remains steady under Re=47,
becomes unsteady over Re=47 and shows three-dimen-
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sional and chaotic turbulence over Re=200. Re is defined
by duwp/n,, where d is the diameter of cylinder, u. is the
free-stream velocity, o the fluid density, and 7, the fluid
viscosity. The flow past a constantly rotating cylinder has
been investigated for Newtonian fluids (Kang et al., 1999;
Stojkovié ef al., 2002; Stojkovi¢ et al., 2003; Kang, 2006).
Kang et al. (1999) employed fully implicit fractional step
method with finite difference method and showed that the
vortex shedding disappears in the range of the rotational
rate o larger than the critical rotating rate o, where the
rotational rate o is defined by the ratio of the circumfer-
ential rotating velocity to free-stream velocity u.
(a=Qd/2u,, ), where Q) denotes the angular velocity of the
cylinder The critical rotational rate ¢ is dependent upon
Reynolds number (Re): ¢y ranges from 0 to 2 for 40<
Re <140 (Kang et al., 1999). Thereby, they suggested that
rotating the cylinder could be used to suppress vortex shed-
ding to reduce the structural vibration, acoustic noise and
resonance. Later, new secondary vortex shedding mode
(Stojkovi¢ et al., 2003) was found at higher rotating rates
than the conditions of Kang et al. (1999). Stojkovi¢ et al.
(2003) showed that there exist wake instabilities with
longer wavelengths compared with the traditional von
Kérman vortex. The vortex mode was predicted at high o
values within narrow region (Stojkovi¢ er al., 2003). Stojk-
ovi¢ et al. (2003) showed four different vortex modes
according to o vortex shedding exists at low value of
0<a< aqp, vortex shedding is suppressed in the moderate
range of oy g <a< oy, the new secondary vortex shedding
is generated at higher values of op<a<ogqm, and the
vortex shedding is suppressed for o> agqn,. For instance,
Stojkovi¢ et al. (2003) showed that ¢y, is predicted to be
1.8, aygn=4.8, and ogqm=5.15 at Re=100, respectively.
They also showed that o1, increases with increasing Re,
while oz, and o4 qm decrease. The Strouhal number (St) of
the secondary vortex shedding decreases with increasing o
at fixed Re, where St is defined by 1/7 and T corresponds
to the period of the vortex shedding.

In computational rheology, there have been several
researches to investigate the effect of viscoelasticity on
vortex shedding in flows past a cylinder (Oliveira, 2001;
Sahin and Owens, 2004; Oliveira and Miranda, 2005).
Oliveira (2001) employed FVM to investigate the vis-
coelastic effect on vortex shedding in unbounded domains.
Oliveira (2001) showed that elasticity reduces St and sup-
presses the fluctuation of drag and lift magnitude, which is
consistent with experimental results (Usui et al., 1980;
Cadot and Lebey, 1999; Cadot and Kumar, 2000). Sahin
and Owens (2004) performed linear stability analysis.
They employed ‘velocity-only’ FVM to explore the influ-
ence of elasticity on the vortex shedding in flow past a con-
fined cylinder. They showed that the amplitude and
frequency of vortex shedding in viscoelastic flows are
lower than for Newtonian case (Sahin and Owens, 2004),
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of which the qualitative trend is consistent with those in
unbounded domain predicted by Oliveira (2001).

Two strategies have previously been used to stabilize
vortex shedding around a cylinder: rotating cylinder and
controlling the fluid viscoelasticity. Thus, we assume that
rotating cylinder coupled with viscoelastic flow may pro-
duce more synergetic effect on suppressing vortex shed-
ding. In the present work, we will verify this assumption
by investigating how viscoelasticity affects the character-
istics of flows around a rotating cylinder in unbounded
flow. In this work, we will focus on the influence of vis-
coelasticity on the secondary vortex shedding mode as was
found by Stojkovié ef al. (2003), according to which the
vortex shedding is eventually suppressed at high rotational
rates (&> o5, qm,) for Newtonian fluids. This paper will show
that the vortex shedding can be suppressed for viscoelastic
fluid flows at lower rotational rate (< oqm). The present
work will be helpful for future experimental design and
will provide a useful strategy to suppress the vortex shed-
ding which is unavoidable in flows around stationary bluff
bodies at high Reynolds number.

This paper is organized as follows. In the following sec-
tions, the governing equations and numerical schemes are
presented. In Sec. 4, we verify the reliability of the present
numerical scheme as well as the numerical parameters
adopted in the present study. Next, we will successively
discuss the effects of viscoelasticity on vortex dynamics
for rotational rates 0<a<2, and at a=35.

2. Governing equations

In this work, the transient problem is considered with
inertia. We employ the inertial momentum equation and
incompressibility constraint. The modified FENE-CR
model is used as a constitutive equation, which was also
used to investigate the viscoelastic effect on vortex shed-
ding around a stationary cylinder previously (Oliveira,
2001). The dimensionless momentum equation, incom-
pressibility constraint and the constitutive equation can be
denoted as follows:

R V) =~V V- (Vur (V) )4V, (1)
ot
V-u=0, 2)

i
T+ f—(;jrpm = (1-A(Vu+(Vu)'),

L*+(Wi/(1-p)er(z,)
1*-3 ’

where # is non-dimensionalized velocity with a charac-

teristic velocity u., 7, and p are non-dimensionalized extra

stress and pressure with u../H, respectively. The Weis-
senberg number Wi is defined by Au./d, where A is the

fr,) = G)
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relaxation time of polymer solution. The retardation ratio
B=nJn, is the ratio of solvent viscosity (7,) and solution
viscosity (77,), and is taken to be (B=n,/n,=1.0/1.1) in
accordance with Oliveira (2001). In Eq. (3), the extensi-
bility parameter L’ is set to 100 following Oliveira (2001).
T,y 1s the upper-convected derivative of tensor #, defined as
follows:

ot I
Ty = 52t VT, (Va) 1,1, (Vi) (4)

We set Re to be 100 throughout this work. The laminar
vortex shedding regime ranges from Re=47 to Re=200
and the flows at Re= 100 have been explored by many pre-
vious researches (Kang et al., 1999; Oliveira, 2001; Stojk-
ovi¢ et al., 2003) and thus, direct comparison between ours
and the literature is possible.

3. Numerical method

3.1. Finite element formulation, transient scheme
and stabilization techniques

The computational domain Q is discretized inte quadri-

lateral finite elements R, so that Q=U R, and ¢=1R,. In this

study, the velocity, pressure and extra stress are approxi-

mated in terms of Lagrangian basis functions as follows:

“:Zl‘r/iun p:Z¢ipi'

S=Z¢isis (5)

where § denotes 7, and ¢, and y; are the bilinear and biqua-
dratic basis functions, respectively.

In the present work, the following fully implicit BDF2
(the 2-step backward difference formula) scheme is
adopted for time forwarding:

00 30" 40+ () ©)
ot 2At )

where { ) corresponds to a variable in the transient equa-
tion, e.g., u in Eq. (1). BDF2 has 2™ order accuracy and A-
stable (Deville ef al., 2002), and this formulation was pre-
viously applied to the finite volume method by Oliveira
(2001). Oliveira (2001} showed that BDF2 was superior to
1* order Euler scheme in the aspect of accuracy.

The final weak forms of Egs. {(1)-(3) are;

~ ntl n n—1
u —4u + n n+
(Re(J—————A‘; % "V l); W

+<~p”+1l+l[)’(Vu”” +(Vu" ')T)+S'” Y W)

= (P T AV (VY)Y ST s (7)

(V" =0, (8)
. n+ 1 7 #—1

<S"H+%(3S 825 wvs

Korea-Australia Rheology Journal

*(V”’HI)T.SWLI*AS‘I#] -v“n+l>;§§>

= (=" + (V") )i

ﬂ\.snﬂ):L2+(Wi/(1:,b'))fr(S"”)’ ©)
L3

where I is the unit tensor and # denotes outward normal
vector at the boundary. The symbols <;> and <<;>> stand
for domain and boundary integral, respectively. In this
work, the streamline upwind/Petrov-Galerkin (SU/PG)
method (Brooks and Hughes, 1982) is adopted as a sta-
bilization technique and consistently applied to the con-
stitutive equation. We employed the modified SU/PG
version by Fan and Crochet (1995). In the SU/PG method,
the weight function is modified as follows:

b= d+hkw- Vg (10)

where ¢, is the modified weight function and ¢ is the reg-
ular weight function as in Eq. (5). & is defined as a charac-

teristic length of finite element and w=-- and |u], = EZM ,

ul, .
where |u] is the magnitude of velocity at the vertices of the
element (Fan and Crochet, 1995). Finally, it is to be noted
that we do not employ DEVSS-G (discrete elastic viscous
split stress) formulation which is also one of the standard
stabilization techniques because the additional variable
(velocity gradient tensor) in DEVSS-G formulation inci-
cases the computational cost and the stable computation in
the present work can be attributed to the small polymer
contribution to the solution viscosity (7,/17,=0.1/1.1),
where 77, is polymer viscosity.

3.2. Solution method

At each time step, fully coupled non-linear equations of
u, p and S are solved. Newton-Raphson method is em-
ployed to linearize the nonlinear equations (7)-(9) as fol-
lows: (u,p,8) ' =A(u,p,8)+(u,p,§) where i denotes the
number of iteration step. The linearized equations are
solved with the previously developed iterative scheme
(Kim et al., 2004) except that there is no velocity gradient
tensor in the present work, Thus, two convergence criteria
are necessary. One criterion for the Newton-Raphson outer
loop is set to the L, norm of A(u,p,$)<10™. The con-
vergence criterion for the iterative solver (BiCGSTAB
solver (van der Vorst, 1992)) is set to L, norm <107,

4. Results and discussion

4.1. Problem description, boundary conditions and
finite elements

In this work, we focus on the viscoelastic effect on the

vortex shedding past a rotating cylinder in unbounded

domain. As shown in Fig. 1, the computational domain is
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symmetric plane Table 1. Description of finite elements used in the present work

Number of Total number Number of  Total

Dx Mesh elements of nodes vertices DOF

A
Y

Mesh 1 6,400 25,856 6528 77,824
Mesh 1 14,400 57,920 14,560 174,080

thus, we chose a little larger 60dx 60d (D% Dy) than that
of Oliveira.

The uniform velocity boundary condition (¢= 1, v=0) is
imposed on the inlet and the constant circumferential
velocity (Qd/2) is prescribed on the cylinder wall. Sym-
metric boundary conditions are imposed on the upper and
lower boundaries, and zero extra stresses are imposed on
the inlet. Open boundary condition (OBC) or so-called ‘no
boundary condition’ (Papanastasiou et al., 1992) is im-
I posed on outlet. In vortex shedding flow, as the flow field
at outlet may change at each time step, the essential bound-

(a) ary condition or zero gradient velocity field boundary con-

dition is not exact. Papanastasiou ef al. (1992) employed

OBC based on FEM and applied it to backward-step flow

Ua simulation with shorter flow geometry than expected to be
fully developed flow field. OBC was successfully applied

to non-isothermal viscoelastic flow simulation in axisym-

metric 4:1 contraction flow simulation (Park and Lee,

(b) 1999) and co-extrusion flow simulation of viscoelastic

flows (Sunwoo et al., 2001).

In the present work, two different finite element meshes
were considered and more refined Mesh I is used except
length scale is non-dimensionalized with the cylinder mesh refinement test. We set the time increment Az to be
diameter d. In Fig. 1 (b), u.. denotes the free stream veloc- 0.05 or 0.025. In the following section, we will show that
ity and o corresponds to the ratio of rotational velocity at ~ the selected numerical parameters are appropriate for the
the cylinder wall to the free stream velocity, where Q is present problem. The detailed mesh information is pre-
the constant angular velocity of the rotating cylinder. The

»
»

<
2.
.
a

197Ul

=

—
1900

symmetric plane .

Fig. 1. Schematic diagram of vortex shedding in the flow past a
rotating cylinder in an unbounded domain: (a) the whole
domain, (b) magnified view near a cylinder. Note that the

cylinder is rotating in counter clockwise direction. \g“.‘.‘:.::;“_:“%‘.‘_‘:-"!‘ 'ﬁ%:%%a&%ﬁi"‘ L
s L0 00000 9 5 0 Y
a square containing a cylinder with the diameter d at the §§§§§§‘§§§:§;‘-ﬁ; m""ﬁlﬁf%‘q‘%%%%'%ggi’g’
center. To accurately resolve the problem, it is expected fg;‘:*““ = ‘g:‘;sfa‘ ’iﬁ’ a2
that the larger computational domain size yields the better ‘5‘5" ‘?’;’g ii
numerical solutions for the unbounded flows. However, =f ':i
there should be a trade-off between accuracy and com- ﬁﬁf’ :
putational resources. In this work, the size of the com- § H
putational domain is denoted by Dy x Dy where Dy and Dy _:-:,; asg ANASNNE
are the domain lengths in the stream and cross-stream %";%%:g' }i§:§§§ § §§E== NN
directions, respectively and we chose Dy=D; Oliveira ;’:f;";};‘;‘:":';:',,,g,_.... n.‘§§‘§§§%§§§§m§5§§§s§ ~-
(2001) compared two computational domain sizes to con- ;’;f,/;':’:?-;?,:f::.i.':::._f:‘i %%fﬁ%@ﬁ%%&ﬁi&ﬂiﬂsﬁn T
sider the unbounded flow around a stationary cylinder: :’::;';;’;::'fii."' =‘=§‘:“:§:§§§3§§‘$§.‘§\3§§§§5§!
60dx 60d (DyxDy) and 45dx30d (Dyx D). They con- TR -“-Wsﬁssﬁggﬁug
cluded that 45dx30d (DyxDy) is sufficient to simulate T ; l; ‘ ‘\‘\\ WS&#SS&#‘
vortex shedding around the stationary cylinder problem. o /// // !/ !l‘ g’ i‘ ‘\\‘ \\‘ \\ ¥ : AN m““&#&%

Thus, the domain size larger than 45dx30d (DyxDy) is
sufficient to mimic the unbounded flows. The rotational  Fig. 2. Magnified view of Mesh II near the cylinder. The detailed
flow around a rotating cylinder is involved in this work and mesh information is presented in Table 1.
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Table 2. Comparison of physical data between the present work and literatures for Newtonian fluids

Oliveira Stojk-

Stojk-

N Park et al. 2001) Lilek et ovic etal. Mesh 11 Kang et ovic etal Kang Mesh 11
Quantities (1298), =00 al. (_1 997) (2002) a=0.0 al. (_1999) (2002) (2906) oc_:l.O
a=0.0 (Mesh-3) a=0.0 w=0.0 At=0.05 a=1.0 a=10 a=1.0 At=0.05

Coave) 1.33 1.3701 1.3566 1.3371 1.3348 1.1040 1.1080 1.1120 1.1045
Crav 0 0 0 0 0 2.4881 2.5040 24787 2.5081
Choimgy 0.0091 0.0099 0.0097 0.0091 0.0092 0.0993 0.0986 0.0997 0.0977
Clito 0.3321 0.3425 0.3400 0.3259 0.3246 0.3631 0.3616 0.3675 0.3586
St=fd/vi - 0.1670 0.1699 0.1650 0.1653 0.1655 0.1658 0.1654 0.1653

sented in Table 1 and the magnified view of Mesh 11 is pre-
sented in Fig. 2.

4.2. Accuracy

We checked mesh-dependence and time increment-
dependence in typical flow conditions and compared the
obtained numerical solutions with previous results in lit-
eratures. First, we compared the present results with pre-

Table 3. Comparison of physical data between the present work
and literature

Oliveira Mesh 11 Mesh 11

Quudies 00 A T005 seeoms
o=0.0, Wi=4 Wi=4 Wi=4
Chave 1.3296 1.2884 1.2886

Crav 0 0 0

Chiiue) 0.0035 0.0032 0.0033
Croue 0.1977 0.1898 0.1902
St=fd/v 0.1597 0.1587 0.1584

vious ones for Newtonian fluid, where all computations
were performed with Mesh II. We set Ar=0.05 since this
setting was used by Oliveira (2001) (note that Oliveira
(2001) also used BDF2 as a time-marching scheme). Later,
we will investigate the effect of Af. The drag and lift coef-
ficients are defined as C,=2f/ou’d and C,= 1/2fy/puid,
respectively, where £, and £, are x- and y- components of the
force exerting on the cylinder wall. The average drag and
lift coefficients are defined with Cp,y=2(Cp +Cp )
and Cyy = 1/2(C;, +C; ), respectively, where the sub-
scripts ‘max’ and ‘min’ denote the maximum and mini-
mum values in one period (we note that Cy,,,, and C,,,,
are defined in steady oscillatory vortex shedding). The fluc-
tuations of drag and lift coefficients are defined as Cp )=
12(C, —Cp ) and Cyp,y=1/2(C; ~C, ), respec-
tively. As shown in Table 2, the present results are con-
sistent with previous results for both stationary (a=0) and
rotating cylinder cases (= 1). Thus, the present numerical
method and numerical parameters are appropriate for the
present problem. For viscoelastic case (FENE-CR fluid),
the comparison between ours and those of Oliveria (2001)
is presented in Table 3. There is good agreement between
two data sets at Wi=4 and «=0. Thus, Mesh II is suf-
ficiently refined for the present problem and all compu-

Table 4. Mesh refinement test. We note that the computational times with Mesh I and Mesh II are 1606 and 4494 seconds for 100 time
steps at a.=1, At=0.025 and Wi=0, respectively. The computational time was checked using Intel® Core™ 2 Duo CPU E4500

@2.2 GHZ with 2.0 GB RAM.

Quantities Mesh 1 ' Mesh 1I . Mesh 1 . Mesh 1T .
a=1, At=0.025, Wi=0 a=1, At=0.025, Wi=0 o=1, At=0.025, Wi=2 a=1, At=0.025, Wi=2
Cowe 1.1020 1.1046 1.0507 1.0468
Crave -2.5057 —2.5081 —2.4623 —2.4626
Chifiuey 0.0977 0.0977 0.0683 0.0610
Ciing 0.3565 0.3587 0.2340 0.2153
St=fd/u 0.1660 0.1653 0.1633 0.1633
Korea-Australia Rheology Journal March 2009 Vol. 21, Ne. 1 31
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o

Fig. 3. Comparison of present results with previous data with a
for the range of 0 < <2.0 at Re=100. We note that vortex
shedding disappears for a>1.8.
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0002040608101214161820
o
(©

tations are performed with Mesh 1T from now on (cf. mesh
refinement test is presented in Table 4). As shown in Table
3, we also investigated the effect of time discretization and
the difference between A7=0.05 and A¢=0.025 was found
to b e negligible. Thus, we conclude that the Az below 0.05

_ 1is sufficient for the present problem.

4.3. Flow behaviors

Kang et al. (1999) performed numerical simulation with
Newtonian fluid for 0<@<2.5 at several Reynolds num-
bers. They reported that vortex shedding completely dis-
appears for a>1.8 at Re=100. Stojkovi¢ er al. (2003)
investigated the same problem with wider ranges of a than
Kang ef dl., ie., 0<a<12. Stojkovi¢ et al. (2003) found
that new secondary vortex mode appears within very small
range of a at higher rotation rate, eg., 4.8<a<5.15 at
Re=100. In the present work, we investigated the effect of
elasticity on vortex shedding at Re=100 in two regimes

1.8
SH% T 17 .
6 "2.0: 1 I 1
04 06 0.8 1.0 1.2 1.4
Cp
(b)
:
0 -
-1 -
22 -
3
o -3 -
-4 + —@— Newtonian -
5L — 8- Wi=3 |
6 T S IR NN (RN MO N N
0002040608101214161.82.0

o
(d)

Fig. 4. Viscoelastic effect on the steady state vortex shedding: (a) St vs a, (b) C. vs Cp, (c) average Cp, , and (d) average C,. Note that
the vortex shedding occurs in the range of 0 <o < 1.8 for Newtonian fluid and the range was reduced to 0<o.< 1.6 for viscoelastic
fluid at Wi=3. In Fig. 4(b), black and red lines correspond to Newtonian and viscoelastic fluid at Wi=3 cases, respectively. We
successively show C,-C;, trajectories corresponding to a=0, 0.5, 1.0, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 (for Newtonian fluid) and
a=0, 0.5, 1.0, 1.5, 1.6, 1.7 (for viscoelastic fluid at Wi=3) from right-up to left-bottom.
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where vortex shedding exists; 0< <2 and a=35, in which
the latter was selected as a typical value in the regime
where the secondary vortex mode is generated.
Variation of St vs. «is presented in Fig. 3 for Newtonian
fluids in the range of 0<@<2.0 at Re=100. In the present
work, vortex shedding completely disappears at «>1.8 for
Newtonian fluid, which is consistent with previous works
(Kang et al., 1999; Stojkovi¢ et al., 2003; we note that the
results of Kang (2006) which are not presented here are
also consistent with those of Kang et a/. (1999)). As shown
in Fig. 3, St is nearly independent of « before the dis-
appearance of vortex shedding. The independence of St
upon « was observed by Kang et al. (1999) and Stojkovié
et al. (2003) at various Reynolds numbers. The agreement
between ours and the literatures in the relationship between
St and o confirms that our numerical scheme and param-
eter settings are sufficiently accurate for the present prob-
lem. Next, we investigate the effect of viscoelasticity on
vortex dynamics. In Fig. 4(a), we plotted the comparative
results between Newtonian fluid and FENE-CR fluid at
Wi=3. As shown in Fig. 4(a), St is slightly lower com-
pared with Newtonian cases. As St is defined by the

1.0

0.9 r

0 20 40 60 80 100 120 140
time

(a)

-3.6 -
38 F

4.0
O 42+

Wi=0

inverse of a vortex shedding period, the elasticity atten-
uates the vortex shedding frequency. This trend is con-
sistent with stationary cylinder case (Oliveira, 1999). In
Fig. 4(a), the gap of St values between Newtonian and vis-
coelastic fluid becomes smaller with increasing o at a<1.5.
Vortex shedding at Wi=3 eventually disappears for a>1.6,
which is smaller than the Newtonian case (o=1.8). Thus,
it is obvious that the elasticity contributes to more suppress
the vortex shedding in the flow past a rotating cylinder
compared to the Newtonian case. We also investigated the
fluctuations of amplitudes (Fig. 4(b)) and the mean values
of drag and lift coefficients (Figs. 4(c) and 4(d)). As shown
in Fig. 4(c)-(d), Cpuy and C., of FENE-CR fluid at
Wi=3 are not so much different from Newtonian case in
the range of 0<a<1.5: the differences in Cp,,, and
Crg between FENE-CR fluid at Wi=3 and Newtonian
fluid are less than 10%. However, as shown in Fig. 4(b),
the magnitudes of fluctuations of FENE-CR at Wi=3 are
much different from the Newtonian cases. Fig. 4(b) rep-
resents the limiting loop of C; vs. Cp: the lines are con-
structed by connecting points of (Cp, C;) in oscillatory
vortex shedding for FENE-CR and Newtonian fluids. In
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Fig. 5. Viscoelastic effect on the vortex shedding dynamics: (a) Cp vs time, (b) C, vs time, (¢) C,. vs Cp, and (d) St vs Wi at Re=100

and o=1.5.

Korea-Australia Rheology Journal

March 2009 Vol. 21, No. 1 33



Ju Min Kim, Kyung Hyun Ahn and Seung Jong Lee

the present work, the polymer contribution is not signif-
icant, i.e., 7,/1,=0.1/1.1. However, it significantly reduces
the fluctuation of vortex shedding, which means that even
small amount of polymer addition can contribute to dra-
matic change in the dynamics of vortex shedding at least
under the present conditions considered, though the small
amount of polymer contribution does not affect so much
the mean values of drag and lift coefficients. We present
the change of the oscillatory behaviors with increasing Wi
at Re=100 and a=1.5 in Fig. 5. We considered Re=100
and a=1.5 case since the vortex shedding disappears for
a>1.5 at Wi=3. As shown in Figs. 5(a)-(c), the fluctu-
ations become reduced with increasing Wi. However, the
trend is predicted to be saturated for Wi>2. As shown in
Fig. 5(d), St slightly decreases with increasing Wi.

In Figs. 6(a)-(b), we show the variation of drag and lift
coefficients vs. time with increasing Wi at Re=100 and
a=5, in which condition the secondary vortex mode was
predicted for Newtonian fluid by Stojkovi¢ er al. (2003).
Our simulation also predicts that the vortex shedding is
obviously generated. In Figs. 6(a)-(b), two periods of
waves are presented and the waves are very irregular,
which is also observed by Stojkovié et al. (2003). St of the

present work is predicted to be 0.023 for Newtonian fluid,
which is in good agreement with the value (~0.022)
obtained by Stojkovi¢ er al. (2003). As shown in Figs.
6(a)-(d), the elasticity dramatically changes vortex dynam-
ics and the vortex shedding completely disappears at
Wi=2. However, the variation of St is complicated with
increasing Wi as shown in Fig. 6(c). As shown in Figs.
6(a)-(b), the periods in Cp, and C; increase at low values of
Wi (near Wi=0.25) and decrease again with more increas-
ing Wi. As shown in Fig. 6(d), the fluctuations of C,and
C; are dramatically reduced with increasing Wi. The shape
of limiting C; vs. Cjcurves changes from shell-like to egg-
like shape, and the area reduces with increasing Wi, which
means the stabilizing effect of viscoelasticity. In Fig. 7, the
flow patterns of Newtonian fluid around a rotating cylinder
(a=5) are presented for one period at Re=100. In the fig-
ure, we observe that there is a circulating flow zone around
the cylinder, of which the shape is similar to an egg. In
each cycle, the egg-like flow zone grows in size (Figs.
7(a)-(b)) and pertains for a long time (Figs. 7(c)-(h)). Then,
the egg-like flow zone collapses onto the cylinder (Figs.
7(1)-()) and it repeats the cycle. This cycle was also pre-
viously observed by by Stojkovi¢ et al. (2002). In Fig, 8,
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Fig. 6. Viscoelastic effect on the secondary-mode vortex: (a) Cp, vs time, (b) C, vs time, (c) Cy vs Cp, and (d) St vs Wi at Re=100 and

a=5.
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(1) ()
Fig. 7. Instantaneous streamlines around the cylinder for Newtonian fluid at Re=100, a.=5: t'T=a) 1/10, b) 2/10, ¢) 3/10, d) 4/10, e)
5/10, ) 6/10, g) 7/10, h) 8/10, i) 9/10, j) 1, where T denotes the period of vortex shedding.

we present the stabilized flow field of viscoelastic fluid 5. Conclusions

(Wi=2) at Re=100 and a=5. We observe the steady cir-

culating flow zone around the cylinder of which the shape In this work, we employed a fully implicit transient

is also egg-like. numerical algorithm based on FEM with an iterative solu-

tion method and OBC method. We investigated the influ-

ence of elasticity on the vortex shedding in the flow past a

rotating cylinder with FENE-CR model. According to the

observation of the present study, we can conclude as fol-
lows:

(1) For 0<a<2, the frequency is slightly attenuated with
increasing Wi numbers. The difference in St values
between Newtonian and FENE-CR fluids becomes
reduced with increasing « up to a=1.5. The fluctua-
tions of Cj, and C; are dramatically reduced for FENE-
CR fluid. The vortex shedding disappears at smaller «

Fig. 8. Streamlines around the cylinder for viscoelastic fluid at in the case of Wi=3: the critical « is 1.6, whereas the

Re=100, a=5 and Wi=2.0. critical ¢ is 1.8 for Newtonian fluid.
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(2) At a=5, we observe that the secondary vortex mode
occurs for Newtonian fluid. In this regime, the vis-
coelasticity dramatically affects the dynamics of vortex
shedding. The vortex shedding disappears at Wi=2.
The variation of St number is not monotonic with
increasing Wi. Instead, St has a minimum near
Wi=0.25.

The present study clearly shows that the viscoelastic
effect significantly contributes to suppress the vortex shed-
ding in flows around a rotating cylinder. We expect that
this study will be helpful for future experimental design
and provide a useful strategy to stabilize vortex shedding,
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