Browse > Article

Effect of viscoelasticity on two-dimensional laminar vortex shedding in flow past a rotating cylinder  

Kim, Ju-Min (Department of Chemical Engineering, Ajou University)
Ahn, Kyung-Hyun (School of Chemical and Biological Engineering, Seoul National University)
Lee, Seung-Jong (School of Chemical and Biological Engineering, Seoul National University)
Publication Information
Korea-Australia Rheology Journal / v.21, no.1, 2009 , pp. 27-37 More about this Journal
Abstract
In this work, we numerically investigate the effect of viscoelasticity on 2D laminar vortex dynamics in flows past a single rotating cylinder for rotational rates $0{\leq}{\alpha}{\leq}5$ (the rotational rate ex is defined by the ratio of the circumferential rotating velocity to free stream velocity) at Re=100, in which the vortex shedding has been predicted to occur in literature for Newtonian fluids. The objective of the present research is to develop a promising technique to fully suppress the vortex shedding past a bluff body by rotating a cylinder and controlling fluid elasticity. The predicted vortex dynamics with the present method is consistent with the previous works for Newtonian flows past a rotating cylinder. We also verified our method by comparing our data with the literature in the case of viscoelastic flow past a non-rotating cylinder. For $0{\leq}{\alpha}{\leq}1.8$, the frequency of vortex shedding slightly decreases but the fluctuation of drag and lift coefficient significantly decreases with increasing fluid elasticity. We observe that the vortex shedding of viscoelastic flow disappears at lower ${\alpha}$ than the Newtonian case. At ${\alpha}$=5, the relationship between the frequency of vortex shedding and Weissenberg number (Wi) is predicted to be non-monotonic and have a minimum around Wi=0.25. The vortex shedding finally disappears over critical Wi number. The present results suggest that the vortex shedding in the flow around a rotating cylinder can be more effectively suppressed for viscoelastic fluids than Newtonian fluids.
Keywords
viscoelastic fluid flow; vortex shedding; rotating cylinder;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Brooks, A. N. and T. J. R. Hughes, 1982, Streamline upwind/ Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations, Comput. Mrthods Appl. Mech. Eng. 32, 199-259   DOI   ScienceOn
2 Cadot, O. and M. Lebey, 1999, Phys. Fluids 11, 494-496   DOI   ScienceOn
3 Cadot, O. and S. Kumar, 2000, J Fluid Mech. 416, 151-172   DOI   ScienceOn
4 Caola A. E., Y. L. Joo, R. C. Armstrong and R. A. Brown, 2001, Highly parallel time integration of viscoelastic flows, J Non-Newtonian Fluid Mech. 100, 191-216   DOI   ScienceOn
5 Deville, M. O., P. F. Fischer and E. H. Mund, 2002, High-order methods for incompressible fluid flow, Cambridge University Press, Cambridge, UK
6 Fan, Y. and M. J. Crochet, 1995, High-order finite element methods for steady viscoelastic flows, J Non-Newtonian Fluid Mech. 57, 283-311   DOI   ScienceOn
7 Graham, M. D., 2003, Interfacial hoop stress and instability of viscoelastic free surface flows, Physics Fluids 15, 1702-1710   DOI   ScienceOn
8 Min, T., J. Y. Yoo and H. Choi, 2003, Maximum drag reduction in a turbulent channel flow by polymer additives, J Fluid Mech. 492, 91-100   DOI   ScienceOn
9 Nigen, S. and K. Walters, 2002, Viscoelastic contraction flows: comparison of axisymmetric and planar configurations, J Non-Newtonian Fluid Mech. 102, 343-359   DOI   ScienceOn
10 Oliveira, P. J. and A. I. P. Miranda, 2005, A numerical study of steady and unsteady viscoelastic flow past bounded cylinders, J Non-Newtonian Fluid Mech. 127, 51-66   DOI   ScienceOn
11 Rothstein, J. P. and G. H. McKinly, 1999, Extensional flow of a polystyrene Boger fluid through a 4:1:4 axisymmetric contraction/expansion, J. Non- Newtonian Fluid Mech. 86, 61-88   DOI   ScienceOn
12 van der Vorst, H. A., 1992, Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of non-symmetric linear systems, SIAM J Sci. Stat. Comput. 12, 631-634
13 Groisman, A. and V. Steinberg, 2000, Elastic turbulence in a polymer solution flow, Nature 405, 53-55   DOI   ScienceOn
14 McKinley, G. H., P. Pakdel and A. Oztekin, 1996, Rheological and geometric scaling of purely elastic instabilities, J Non-Newtonian Fluid Mech. 67, 19-47   DOI   ScienceOn
15 Park, S. J. and S. J. Lee, 1999, On the use ofthe open boundary condition method in the numerical simulation of nonisothermal viscoelastic flow, J. Non-Newtonian Fluid Mech. 87(2-3), 197-214   DOI   ScienceOn
16 Oliveira, P. J., 2001 , Method for time-dependent simulations of viscoelastic flows: vortex shedding behind cylinder, J Non-Newtonian Fluid Mech. 101, 113-137   DOI   ScienceOn
17 Kang, S., 2006, Laminar flow over a steadily rotating circular cylinder under the influence of uniform shear, Phys. Fluids 18, 047106   DOI   ScienceOn
18 McKinley, G H., R. C. Armstrong and R. A. Brown, 1993, The wake instability in viscoelastic flow past confined circular cylinders, Phil. Trans. Roy. Soc. Lond. A 344, 265-304   DOI
19 Min, T., J. Y. Yoo and H. Choi, 2001, Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows, J Non-Newtonian Fluid Mech. 100, 27-47   DOI   ScienceOn
20 Papanastasiou, T. C., N. Malamataris and K. Ellwood, 1992, A new outflow boundary condition, Int. J Numer. Methods Fluids 14, 587-608   DOI
21 Stojkovic, D., M. Breuer and F. Durst, 2002, Effect of high rotation rates on the laminar flow around a circular cylinder, Phys Fluids 14(9), 3160-3178   DOI   ScienceOn
22 Dimitropoulos, C. D., R. Sureshkumar and A. N. Beris, 1998, Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters, J Non-Newtonian Fluid Mech. 79, 433   DOI   ScienceOn
23 Alves, M. A., F. T. Pinho and P. J. Oliveira, 2001, The flow of viscoelastic fluids past a cylinder: finite-volume high-resolution methods, J Non-Newtonian Fluid Mech. 97, 207-232   DOI   ScienceOn
24 Spiegelberg H. and G. H. McKinley, 1996, Stress relaxation and elastic decohesion of viscoelastic polymer solutions in extensional flow, J. Non-Newtonian Fluid Mech. 67, 49-76   DOI   ScienceOn
25 Surεshkwnar, R., A. N. Beris and R. A. Handler, 1997, Direct numerical simulation of the turbulent channel flow of a polymer solution, Phys. Fluids 9(3), 743-755   DOI   ScienceOn
26 Stojkovic, D., P. Schon, M. Breuer and F. Durst, 2003, On thε new vortex shedding mode past a rotating circular cylinder, Phys. Fluids 15(5), 1257-1260   DOI   ScienceOn
27 Park, J., K. Kwon and H. Choi, 1998, Numerical solutions of flow past ,a circular cylinder at Reynolds number up to 160, KSME Int. J 12, 1200-1205
28 Kirn, J. M., C. Kim, K. H. Ahn and S. J. Lee, 2004, An efficient iterative solver and high-resolution computations of the Oldroyd-B fluid flow past a confined cylinder, J Non-Newtonian Fluid Mech. 123(2-3), 161-173   DOI   ScienceOn
29 Sunwoo, G. B , S. J. Park, S. J. Lee, K. H. Ahn and S. J. LEE, 2001, Numerical simulation of three-dimensional viscoelastic flow using the open boundary condition method in coextrusion process, J Non-Newtonian Fluid Mech. 99(2-3), 125-144   DOI   ScienceOn
30 Carew, E. O. A., P. Townsend and M. F. Webster, 1993, A taylorpetrov- galerkin algorithm for viscoelastic flow, J Non-Newtonian Fluid Mech. 50, 253-287   DOI   ScienceOn
31 Lilek Z., S. Muzaferija, M. PeriE and V. Seidl, 1997, Computation of unsteady flows using nonmatching blocks of structured grids, Numer. Heat Transf B 32, 403-418   DOI   ScienceOn
32 Sahin, M. and R. G. Owens, 2004, On the effect of viscoelasticity on two-dimentional vortex dynamics in the cylinder wake, J Non-Newtonian Fluid Mech. 123, 121-139   DOI   ScienceOn
33 Williamson, C. H. K., 1996, Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech. 28, 477-539   DOI   ScienceOn
34 Saramito, P. and J. M. Piau, 1994, Flow characteristics of viscoelastic fluids in an abrupt contraction by using numerical modeling, J. Non-Newtonian Fluid Mech. 52, 263-288   DOI   ScienceOn
35 Kang, S., H. Choi and S. Lee, 1999, Laminar flow past a rotating circular cylinder, Phys. Fluids 11, 3312-3321   DOI
36 Usui, H., T. Shibata and Y. Sano, 1980, J Chem. Eng. Jpn. 13, 77-79   DOI   ScienceOn