• 제목/요약/키워드: Lift/Drag

검색결과 643건 처리시간 0.042초

Aerodynamic Performance Improvement by Divergent Trailing Edge Modification to a Supercritical Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1434-1441
    • /
    • 2001
  • A computational study has been performed to determine the effects of divergent trailing edge (DTE) modification to a supercritical airfoil in transonic flow field. For this, the computational result with the original DLBA 186 supercritical airfoil was compared to that of the modified DLBA 283. A wavier-Stokes code, Fluent 5. 1, was used with Spalart-Allmaras's one-equation turbulence model. Results in this study showed that the reduction in drag due to the DTE modification is associated with weakened shock and delayed shock appearance. The decrease in drag due to the DTE modification is greater than the increase in base drag. The effect of the recirculating flow region on lift increase was also observed. An airfoil with DTE modification achieved the same lift coefficient at a lower angle of attack while giving a lower drag coefficient. Thus, the lift-to-drag ratio increases in transonic flow conditions compared to the original airfoil. The lift coefficient increases considerably whereas the lift slope increases just a little due to DTE modification.

  • PDF

Minimization of wind load on setback tall building using multiobjective optimization procedure

  • Bairagi, Amlan Kumar;Dalui, Sujit Kumar
    • Wind and Structures
    • /
    • 제35권3호
    • /
    • pp.157-175
    • /
    • 2022
  • This paper highlights the minimization of drag and lift coefficient of different types both side setback tall buildings by the multi-objective optimization technique. The present study employed 48 number both-side setback models for simulation purposes. This study adopted three variables to find the two objective functions. Setback height and setback distances from the top of building models are considered variables. The setback distances are considered between 10-40% and setback heights are within 6-72% from the top of the models. Another variable is wind angles, which are considered from 0° to 90° at 15° intervals according to the symmetry of the building models. Drag and lift coefficients according to the different wind angles are employed as the objective functions. Therefore 336 number population data are used for each objective function. Optimum models are compared with computational simulation and found good agreements of drag and lift coefficient. The design wind angle variation of the optimum models is considered for drag and lift study on the main square model. The drag and lift data of the square model are compared with the optimum models and found the optimized models are minimizing the 45-65% drag and 25-60% lift compared to the initial square model.

Analysis of conventional drag and lift models for multiphase CFD modeling of blood flow

  • Yilmaz, Fuat;Gundogdu, Mehmet Yasar
    • Korea-Australia Rheology Journal
    • /
    • 제21권3호
    • /
    • pp.161-173
    • /
    • 2009
  • This study analyzes especially drag and lift models recently developed for fluid-solid, fluid-fluid or liquid-liquid two-phase flows to understand their applicability on the computational fluid dynamics, CFD modeling of pulsatile blood flow. Virtual mass effect and the effect of red blood cells, RBCs aggregation on CFD modeling of blood flow are also shortly reviewed to recognize future tendencies in this field. Recent studies on two-phase flows are found as very useful to develop more powerful drag-lift models that reflect the effects of blood cell's shape, deformation, concentration, and aggregation.

Fluctuating lift and drag acting on a 5:1 rectangular cylinder in various turbulent flows

  • Yang, Yang;Li, Mingshui;Yang, Xiongwei
    • Wind and Structures
    • /
    • 제34권1호
    • /
    • pp.137-149
    • /
    • 2022
  • In this paper, the fluctuating lift and drag forces on 5:1 rectangular cylinders with two different geometric scales in three turbulent flow-fields are investigated. The study is particularly focused on understanding the influence of the ratio of turbulence integral length scale to structure characteristic dimension (the length scale ratio). The results show that both fluctuating lift and drag forces are influenced by the length scale ratio. For the model with the larger length scale ratio, the corresponding fluctuating force coefficient is larger, while the spanwise correlation is weaker. However, the degree of influence of the length scale ratio on the two fluctuating forces are different. Compared to the fluctuating drag, the fluctuating lift is more sensitive to the variation of the length scale ratio. It is also found through spectral analysis that for the fluctuating lift, the change of length scale ratio mainly leads to the variation in the low frequency part of the loading, while the fluctuating drag generally follows the quasi-steady theory in the low frequency, and the slope of the drag spectrum at high frequencies changes with the length scale ratio. Then based on the experimental data, two empirical formulas considering the influence of length scale ratio are proposed for determining the lift and drag aerodynamic admittances of a 5:1 rectangular cylinder. Furthermore, a simple relationship is established to correlate the turbulence parameter with the fluctuating force coefficient, which could be used to predict the fluctuating force on a 5:1 rectangular cylinder under different parameter conditions.

스마트 무인기에 부착한 Vortex Generator 효과 (Application of Vortex Generators on Smart Un-manned Aerial Vehicle(SUAV))

  • 정진덕;최성욱;조태환
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.688-693
    • /
    • 2007
  • To improve aerodynamic efficiency of the Smart Un-manned Aerial Vehicle(SUAV), vortex generator was applied along the wing upper surface during SUAV tests. Vortex generator, initially used in TR-S2 configuration to enhance lift characteristic, increased lift coefficient. Meanwhile vortex generator produced excessive drag and eventually reduced lift-to-drag ratio. To examine the effect of vortex generator's height, three different heights of vortex generator were used for various SUAV configuration. Vortex generator of 3mm height used in TR-S4 configuration produced 3.1% increase in maximum lift coefficient and 1.5% reduction in lift-to-drag ratio.

다기능 spoiler의 공력특성에 관한 연구 (A study on the Aerodynamic Characteristics of a Multi-Functional Spoiler)

  • 이봉준;신동진;김우진
    • 한국항공운항학회지
    • /
    • 제8권1호
    • /
    • pp.67-81
    • /
    • 2000
  • An experimental study was performed on the time lag, lift and drag characteristics of a multi functional spoiler which is a device to increase lift and drag contrary to conventional spoiler which decrease lift and increase drag. In this study, a wind tunnel investigation was made of the effect of incidence angle, slot width, and chordwise location of multi functional spoiler on the time lag, lift and drag characteristics of a wing. The results indicate that the time lag of a multi functional spoiler is influenced mainly not only by the chordwise location of a spoiler but also by the slot width between spoiler and wing upper surface. Multi functional spoiler can reduce time lag effectively by slotting the trailing edge of spoiler with slot ratio (slot width devided by the wing chord length) between 0.05 and 0.1. Also, it shows that the lift and drag coefficients of the wing with the multi functional spoiler and trailing edge flap are increased by 20% and 80%, respectively, compared to the wing with trailing edge flap only.

  • PDF

평면 제트내의 평행하게 놓인 원형 실린더가 받는 항력과 양력 (Drag and Lift Forces of a Circular Cylinder Located Parallel to a Planar Jet)

  • 강신형;홍순삼
    • 대한기계학회논문집B
    • /
    • 제20권1호
    • /
    • pp.369-376
    • /
    • 1996
  • Variations of the drag and lift forces of a circular cylinder in a planar turbulent jet were experimentally investigated. The force was directly measured using the load cell and estimated by integrating the pressure distribution on the cylinder. As the cylinder moves outward from the center of the jet, the direction of lift force changes and the drag force decreases. Reynolds number, the ratio of cylinder's diameter to half width of jet had effect on maximum drag coefficient and the location where the direction of lift changes.

넓은 받음각 범위에서 높은 양항비를 가지는 다중 수중익 형상의 전개장치 (Vane deployer with a hydrofoil array for enhanced lift-to-drag ratio at wide range of angle of attack)

  • 박주연;박형민
    • 한국가시화정보학회지
    • /
    • 제17권2호
    • /
    • pp.25-31
    • /
    • 2019
  • A device that consists of an array of hydrofoils (called a vane deployer) is widely used in ocean engineering. In general, the vane deployer has to spread out efficiently, which is possible by enhancing the lift-to-drag ratio. In the present study, using a computational fluid dynamics, we investigate the effect of hydrofoil arrangement on the lift-to-drag ratio to establish the condition in which a reasonable level of constant lift-to-drag ratio is achieved in a wide range of angle of attack, to avoid a degradation of the hydrodynamic performance. First, the flow around two-dimensional hydrofoil array is examined by varying the size of hydrofoil components, gap between the hydrofoils, and arrangement type. As a result, we determine the optimized hydrofoil array configuration whose lift-to-drag ratio is nearly independent on the angle of attack. Finally, a three-dimensional simulation is performed for the optimized geometry to estimate the performance of actual vane deployer.

삼차원 천이영역에서 원형 실린더 주위의 유동 (Flow over a Circular Cylinder in Three-Dimensional Transitional Regimes)

  • 김진성;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.956-961
    • /
    • 2003
  • Direct numerical simulations of flow over a circular cylinder are performed at two different Reynolds numbers (Re=220 and 300) that correspond to three-dimensional instabilities of mode A and mode B, respectively, to investigate the characteristics of drag and lift at these Reynolds numbers. The drag and lift coefficients are measured locally along the spanwise direction and their characteristics are studied in detail. The variation of total drag in time is large at Re=220, and the total drag becomes minimum when vortex dislocation occurs in the wake. The drag and lift variations in space are also closely associated with the evolution of vortex dislocation at this Reynolds number. At Re=300, vortex dislocation is not found in the wake and temporal variations of drag and lift are much smaller than those at Re=220, but their spatial variations are quite large due to the near-wake secondary vortices existing in the mode B instability.

  • PDF

초음속 조건의 플랩을 장착한 Busemann Biplane의 플랩 길이와 각도 변화에 따른 양항비 성능 비교 (THE ANALYSIS OF AERODYNAMIC CHARACTERISTICS FOR BUSEMANN BIPLANE WITH FLAP)

  • 태명식;손찬규;오세종
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.42-50
    • /
    • 2013
  • The supersonic airplane with flapped biplane, Busemann biplane equipped flap, is superior to drag and noise reduction due to wave cancelation effect between upper and lower airfoils. In this study, it is numerically calculated and analyzed the lift, drag and lift to drag ratio of flapped biplane with respect to various the length and angle of the flap. Euler solver of EDISON CFD, web based computational fluid dynamic solver for the purpose of education, is employed. Depending on the length of the flap, lift and drag increase linearly, and there exists the optimum flap angle which maximize the lift-to-drag ratio at the freestream mach 2.0 on-design condition. The predictable relational expression is driven as liner equation. As a results of comparison with drag of flapped biplane, Busemann biplane, and diamond airfoil with the same lift, the drag of flapped biplane is 88.76% lower than that of the Busemann biplane and 70.67% lower than that of the diamond airfoil. In addition, the change of pressure is compared to confirm the noise reduction effect of flapped biplane at h/c=5 of lower airfoil. The shock strength of flapped biplane is smaller than that of other airfoils.