• Title/Summary/Keyword: Lifetime Prediction Model

Search Result 79, Processing Time 0.026 seconds

A study of lifetime prediction of PV module using damp heat test (고온고습 시험을 이용한 실리콘 태양전지 모듈의 수명 예측 연구)

  • Oh, Won Wook;Kang, Byung Jun;Park, Nochang;Tark, Sung Ju;Kim, Young Do;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.63.1-63.1
    • /
    • 2011
  • To analyze the phenomenon of corrosion in the PV module, we experimented damp heat test at $85^{\circ}C$/85% relative humidity(RH) and $65^{\circ}C$/85% RH for 2,000 hours, respectively. We used 30 mini-modules designed of 6inch one cell. Despite of 2,000 hours test, measured $P_{max}$ is not reached failure which is defined less than 80% compared to initial $P_{max}$. Therefore, we calculate proper curve fitting over 2,000 hours. Data less than 80% $P_{max}$ is found and B10 lifetime is calculated by the number of failure specimens and weibull distribution. Using B10 lifetime that the point of failure rate 10% and Peck's model, the predictable equation of lifetime was derived under temperature and humidity condition.

  • PDF

Lifetime Prediction of Existing Highway Bridges Using System Reliability Approach (실제 교량의 시스템 신뢰성해석에 기초한 수명예측)

  • Yang, Seung Ie
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.365-373
    • /
    • 2002
  • In this paper, the system reliability concept was presented to predict the lifespan of bridges. Lifetime distribution functions (survivor functions) were used to model real bridges to predict their remaining life. Using the system reliability concept and lifetime distribution functions (survivor functions), a program called LIFETIME was developed. The survivor functions give the reliability of component at time t. The program was applied to an existing Colorado state highway bridge to predict the failure probability of the time-dependent system. The bridge was modeled as a system, with failure probability computed using time-dependent deteriorating models.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Lifetime Management Method of Lithium-ion battery for Energy Storage System

  • Won, Il-Kuen;Choo, Kyoung-Min;Lee, Soon-Ryung;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1173-1184
    • /
    • 2018
  • The lifetime of a lithium-ion battery is one of the most important issues of the energy storage system (ESS) because of its stable and reliable operation. In this paper, the lifetime management method of the lithium-ion battery for energy storage system is proposed. The lifetime of the lithium-ion battery varies, depending on the power usage, operation condition, and, especially the selected depth of discharge (DOD). The proposed method estimates the total lifetime of the lithium-ion battery by calculating the total transferable energy corresponding to the selected DOD and achievable cycle (ACC) data. It is also demonstrated that the battery model can obtain state of charge (SOC) corresponding to the ESS operation simultaneously. The simulation results are presented performing the proposed lifetime management method. Also, the total revenue and entire lifetime prediction of a lithium-ion battery of ESS are presented considering the DOD, operation and various condition for the nations of USA and Korea using the proposed method.

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Service Life Prediction for Building Materials and Components with Stochastic Deterioration (추계적 열화모형에 의한 건설자재의 사용수명 예측)

  • Kwon, Young-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.35 no.4
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method (경사하강법을 이용한 낸드 플래시 메모리기반 저장 장치의 고효율 수명 예측 및 예외처리 방법)

  • Lee, Hyun-Seob
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.44-50
    • /
    • 2021
  • Recently, enterprise storage systems that require large-capacity storage devices to accommodate big data have used large-capacity flash memory-based storage devices with high density compared to cost and size. This paper proposes a high-efficiency life prediction method with slope descent to maximize the life of flash memory media that directly affects the reliability and usability of large enterprise storage devices. To this end, this paper proposes the structure of a matrix for storing metadata for learning the frequency of defects and proposes a cost model using metadata. It also proposes a life expectancy prediction policy in exceptional situations when defects outside the learned range occur. Lastly, it was verified through simulation that a method proposed by this paper can maximize its life compared to a life prediction method based on the fixed number of times and the life prediction method based on the remaining ratio of spare blocks, which has been used to predict the life of flash memory.

Estimating Customer Value under B2B Environment Using Description and Prediction Models (B2B 거래에서 서술모델과 예측모델을 이용한 고객가치 산정)

  • 박찬주;박윤선;주상호;유우연
    • Korean Management Science Review
    • /
    • v.20 no.2
    • /
    • pp.135-149
    • /
    • 2003
  • Developing a proper program for customer evaluation is one of the most imminent tasks to implement CRM (Customer Relationship Management). Design of the Customer Value model is an important key to the customer evaluation progrgm. This paper proposes two models for estimating Customer Value. The first one is a Description Model for Customer Value based on customer CSI (Customer Satisfaction Index) data. This model represents as quantitative numbers what customers feel from the company or the service. The second one is a Prediction Model which employs factor analysis and regression to predict customer value. This paper exploits the two models to evaluate Customer Value as well as for customer behavior prediction.