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Lifetime Prediction of Existing Highway Bridges Using System Reliability Approach
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ABSTRACT :In this paper, the system reliability concept was presented to predict the lifespan of bridges. Lifetime
distribution functions (survivor functions) were used to model real bridges to predict their remaining life. Using the
system reliability concept and lifetime distribution functions (survivor functions), a program called LIFETIME was
developed. The survivor functions give the reliability of component at time t. The program was applied to an existing
Colorado state highway bridge to predict the failure probability of the time-dependent system. The bridge was modeled as

a system, with failure probability computed using time-dependent deteriorating models. ’
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1. Introduction

The civil infrastructures are designed to serve the
public. And no matter how well these are designed,
they are deteriorating with time. Especially, the
bridges are one of the important civil infrastructures.
With the maintenance of almost 600,000 U.S. highway
bridges funded by the federal government alone
(O'Connor and Hyman 1989), the annual cost of
inspection and repair of bridges is significant. With
ever increasing budgetary constraints and the
continuing decay of the nation’s infrastructure, it is
more important to use this fund effectively. In order
to avoid the high cost of rehabilitation, the rating
(evaluation) of these bridges must correctly report
the actual load-carrying capacity. The specifications

(Manual 1983, Condition 1994) are used for bridge
rating. These specifications use level zero (allowable
stress design) and level one (load factor design) safety
checking requirements. Level zero safety checking
requirement is a deterministic method. Level one
method uses characteristic values of basic random
variable. In these safety checking methods (level zero
and level one methods), the single component is used
to check safety and to compute rating value. However,
the bridges are a system of all components.

For over three decades, researchers have been
investigating application of system reliability concepts
and techniques to structural design and evaluation
(Cornell 1967, Moses 1982, Ang and Tang 1984,
Thoft-Christensen and Murotsu 1986, Ditlevsen and
Bjerager 1986, Karamchandani 1990].
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Resistances and loads are not constant with time.
This is because ductility and strength of materials
deteriorate with time and are affected by previous
loading history, and loads on structures vary with
time. Time invariant reliability analysis of structural
systems may provide unconservative reliability estimation
because it considers only the initial variability of
random variables, which may increase with time
(lizuka and Frangopol 1991].

As a new approach, a computer program is developed
by using system reliability concept and lifetime
function. One of the lifetime functions, survivor
function, is used to predict time variant system
failure probability. The program is applied to an
existing Colorado state highway bridge (E-17-AH).

2. System Reliability Analysis

Structure function (Leemis 1995) is a useful tool to
describe the state of system with n components.
Structure function defines the system state as a
function of the component state. A system is assumed
to be a collection of n components (Ghosn and
Frangopol 1999]). In addition, it is assumed that both
components and the system can either be functioning
or failed. The state of component i, x;, is assumed as

X =

i

0 if component i has failed
1 if component i is functioning (1)

The n component system can be expressed as a
system state vector as following.

..... Xa) (2)

Structure function, ¢(x), expresses the system
state vector x to zero or one. The structure function
¢ (x) for a given system state vector is

0 if the system has failed
1  if the system is functioning

4 (x) ={ (3)
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The most common system is the series and parallel
system. For series system, since the any one component
failure in the system causes the system failure, the
series system is expressed as

0 if there exists an ¢ such that x,=0
#(x) -
1if x,=1 for all i=1,2,..., k..., n
= min{x;, x3,..., Khs vees Xy} 4)

[T

=l

For parallel system, all component failures in a
system cause the system failure, the parallel system
is expressed as

0 if ;=0 for all i=1,2,...,k, ...,n
fx) =

1 if there exists an 7 such that x;=1

=max{x,, %,..., P77 X} (5)

As an example, the structure function is obtained
for a 5-component system shown in Fig. 1. Also, Fig. 1
shows the reduction steps. These reduction steps are
also expressed as functions through Eq. (6) to Eq. (9).

The first reduction step is a parallel system
between components 2 and 3. By first reduction, the
subsystem 1 is obtained and expressed as following.

Folx) =1-1-x)1-x;) (6)

Where
x; = State of component ;

BEFORE REDLICTION FIRST REDUICTION

n 1 HTLBS L
piSsaeeas
{&3}—{371 =

SECOND REDLICTION THOIRIY REDUCTION

pitniny
[T Guesd Gues
FOURTH REDUCTION
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Fig. 1 Sequential Reduction Procedure




The second reduction is a series system between
components 4 and 5. This is expressed as following.

a(X) =X Xs (7

The third reduction is also series system between
subsystem 1 and component 1.

$a(x) =x0 (8)

By fourth reduction, the structure function for this
5-component system is obtained.

é(x) =1-{1-—x,[1—(l-—x2)(1—x3)]}(1~x4x5) (9)

The structure function is deterministic. This assumption
may be unrealistic for certain types of components or
system. So, reliability functions (Leemis 1995] are
necessary to model the structures which are in use. x;
was defined to be the deterministic state of component
i. Now, x; is a random variable. The probability that
component I is functioning is given by

p, =Plx, =1] §10)]

Where

Pi = Probability that component i is functioning

In order to obtain the reliability function for a
5-component, system shown in Fig. 1, the same procedure
is necessary. But the component reliability function,
D, is used in each step instead of component state x.

3. Lifetime Distribution

Reliability function gives the reliability of components
or system at specific time f{. In this section, the
probability of failure is generalized to be a function of
time with lifetime distribution. There are several
lifetime functions to describe the evolution of the
probability of failure. In this paper, one lifetime
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function is introduced called “Survivor function’. The
lifetime function applies to both discrete and continuous
lifetime and is used to describe the distribution of
system lifetime, as well as of its components.

The survivor function is the generalization of reliability
because the survivor function gives the reliability
that a component or system is functioning at one
particular time. The survivor function is expressed

S()=P[T 21] t20 (11

It is assumed that when ¢<0,S(5 is one. The
survivor function has to satisfy three conditions.
These are

1) S0)=1

9) lim$()=0

3) $(® is non-increasing without any maintenance

Several distributions are used as survivor functions.
The exponential distribution, Weibull distribution,
Log-Logistic distribution, and Exponential Power

distribution are used in this paper. These survivor
functions are shown in table 1.

Table 1 Survivor Function

Distribution Survivor function
Exponential exp(—A¢)
Weibull exp(— (4, %)
e 1l
Log-logistic 1+ (A DF
Exponential- power exp(l —exp(d, H¥)

Where
A = Failure rate
A, = Scale factor

x = Shape factor
t = Time, t=0

Exponential survivor function is only one parameter
distribution and has constant failure rate. Others
have two parameters (failure rate and shape factor).
Depending on shape factor «, survivor functions have
an increasing failure rate or constant failure rate or
decreasing failure rate.
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In order to find out the lifetime function for a
system, the concept explained in section 2 and section 3
are used. To make lifetime function for a system, the
component survivor functions are used as arguments.
As an example, if there is a three-component series
system with independent relation for each component,
the system reliability function is

$() = 8,(1)8,()8;(1) (12)

Where

S = Survivor function of component i

For three-component parallel system, the system
lifetime function is

§@ =1-(1-5,)A-85,)A-5,() (13)

4. Application to Existing Colorado Bridge
4.1 Program Flowchart

The program LIFETIME is developed using the
system reliability concept and lifetime distributions
explained in the previous sections. For random parameters
of lifetime distributions, Monte Carlo simulation is
used. The flowchart is shown in Fig. 2. Because of
space limitation, it is impossible to show in detail.

In the figure, ICDF menas ‘Inverse Cumulative
Distribution Function”. Depending on the simulation
numbers, computing time is decided. Failure rate and
scale factor can have six random distributions (Uniform,
Triangular, Log-normal, Gamma, Exponential, and Beta
distributions). Because the generated random numbers
should be positive, these distribution types shown in
Fig. 2 are selected. Although Uniform survivor distribution

Read Input Data

(Number of Component, Component Distribution Type)
(Failure Rate Distribution Type, Number of Simulation )
(Current Probability of Failure, Target Probability of Failure)

!
| Generate Random Number Uniformly l
{
Yes
Time > 500 years
No l
v { | ! v }
ICDF for ICDF for ICDF for ICDF for ICDF for ICDF for
Uniform Distribution Triangle Distribution Log- Normal Distribution Gamma Distribution| Exponential Distribution| Beta Distribution
{ v | v !
/ { |
[ Exponential Distribution] | Weibull Distribution | | Uniform Distribution| | Log- Logistic Distribution| | Exponential Power Distribution|
|

[ Compute System Reliability and System Failure Pmbability]

[ Print System Reliability and System Failure Probabilty|

Y

Compute Mean Time to Failure
Compute Median Time to Failure

Fig. 2 Flowchart of the Program
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is programmed, it is not explained in the previous
section because it is not used very frequently.

4.2 Application of Program LIFETIME

In this section, the applications of LIFETIME are
shown.

The Fig. 3 shows the time dependent system failure
probability of series systems. It is assumed that each
component is independent and has the same deterministic
failure rate. And the survivor function of each component
is exponential. It can be seen that for a series
system, increasing components makes the system
dangerous. The parallel systems are shown in Fig. 4.
The failure rate of each component is the same and
has random distribution (uniform: a = 0.00413/year
and b = 0.00586/year). It is assumed that all components
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Fig. 3 Cumulative-Time System Failure Probability of
Series System
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Fig. 4 Cumulative-Time System Failure Probability of
Parallel System
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are independent. The Fig. 5 and Fig. 6 show the time
dependent system failure probability of arbitrary
3-component and 4-component systems. All components
of each system are independemt. The 3-component
system has 0.005/year failure rate of components 2
and 3. Fig. 5 shows the effect of changing failure rate
of component 1. In the case of 4-component system,
the failure rate of each component has random variable
whose distribution type is uniform (a = 0.00413/year
and b = 0.00586/year).

4.3 Colorado State Bridge E-17-AH

In this section, the Colorado State Bridge E-17-AH
is explained. Bridge E-17-AH is located on 40th Avenue
(State Highway 33) between Madison and Gardfield
Streets in Denver. The bridge has three simple spans
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Fig. 5 Cumulative-Time Failure Probability of 3-Component
System
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Fig. 6 Cumulative-Time Failure Probability of 4-Component
System
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of equal length (43.83 ft) and a total length of 137.3
ft. The deck consists of 9.0 in of reinforced concrete
and a 3.0 in surface layer of asphalt. The east-west
bridge has two lanes of traffic in each direction with
an average daily traffic 8,500 vehicles. The roadway
width is 40 ft with 5 ft pedestrian sidewalks and
handrailing on each side. The bridge offers 22.17 of
clearance for the railroad spur that runs underneath.
There is no skew or curvature. The slab is supported
by nine standard-rolled, compact, and non-composite
steel girders. The girders are stiffed by end diaphragms
and intermediate diaphragms at the third points.
Each girder is supported at one end by a fixed
bearing and an expansion bearing at the other end.
The bridge is shown in Fig. 7 and 8.

4.4 Data Collection

The lifetime distribution functions were explained
in section 3. Each lifetime distribution has each
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Fig. 7 Colorado State Bridge E-17-AH :Profile
(Estes 1997)
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Fig. 8 Colorado State Bridge E-17-AH :Cross Section
(Estes 1997)
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parameter (failure rate, scale factor and shape factor)
and this should be obtained from data analysis to
predict the probability of failure of real bridges. In
this paper, the data from Maunsell Ltd (Maunsell
1999) for Highway Agency are used for bridge
components. In this report, the serviceable life is
defined to be the time taken for a significant defect
requiring attention to be recorded at an inspection.
Detailed information of the condition of each component
at the time of inspection is recorded and this data
are transferred to the National Structures Database.
According to defect severity, four levels were classified.

* Severityl : no significant defects

* Severity2 : minor defects of a non urgent nature

* Severity3 : defects which shall be included for

attention within the next annual
maintenance program

* Severity4 : the defect is severe and urgent action

is needed

Therefore, the serviceable life from this report is
defined to be the time taken for a structural defect to
be recorded for attention in next annual year or the
time taken for a structural defect to be needed for
urgent action.

In the state-of-the-art Rilem 14 on the Durability
of Concrete Structures (Rilem 1996) the RILEM Technical
Committee states that the probability density of service
life generally pecks rapidly before decreasing gently
towards zero when approaching an infinitely long
service life. This type of distribution must be selected.

Because the curve fitting process in data analysis
was generally confined to initial part of the continuous
distribution, it was impossible to fit exact shape of
the distribution.

Weibull distribution was selected as best fit of the
data and summarized in the report (Maunsell 1999).
Table 2 and 3 contain the parameters of Weibull
distribution for Severity 3 and 4.

4.5 Modeling of Colorado State Bridge E-17-AH

Due to nonlinearity in multi-girder bridge types,
single girder failure doesn’t cause the bridge failure.
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Table 2 Parameters of Weibull Distributions of Serviceable Life for Severity 3 Defects(Adapted from Maunsell 1999)

Category Description x 1/4; MODE
Structure forms Years
Al Arches, concrete 2.44 41.28 33
A2 Slab decks 1.40 56.12 22
A3A RC beam and Slab, slabs 2.98 27.73 24
A3B RC beams and Slab, Beams 2.88 30.26 26
AdA Composite, slabs 2.84 37.72 32
AdB Composite, beams 1.47 26.66 12
ABA Pretensioned slabs 1.70 68.74 40
A5B Pretensioned beams 141 69.45 28
ABA Post tensioned, slabs 2.62 51.55 42
A6B Post tensioned, beams 3.29 23.97 21

Table 3 Parameters of Weibull Distributions of Serviceable Life for Severity 4 Defects(Adapted from Maunsell 1999)

Category Description x 1/4; MODE
Structure forms Years

Al Arches, concrete Insufficient Data for Analysis

A2 Slab decks 2.37 130.50 103
A3A RC beam and Slab, slabs 3.76 83.36 76
A3B RC beams and Slab, Beams 1.66 228.50 119
AdA Composite, slabs 291 98.98 85
A4B Composite, beams 2.86 94.70 81
ABA Pretensioned slabs 1.90 223.39 119
A5B Pretensioned beams 3.19 80.23 71
ABA Post tensioned, slabs 3.03 104.20 91
A6B Post tensioned, beams 2.60 100.83 83

When one girder fails on bridge, the load redistribution
takes place and the bridge is capable to carry additional
loads. The multi-girder bridges are modeled as
combination of series and parallel systems in reliability
analysis. The following failure modes are considered.
* Any one girder failure or deck failure causes the
bridge failure.
* Any two adjacent girder failures or deck failure
cause the bridge failure.
* Any three adjacent girder failures or deck failure
cause the bridge failure.

* Failure of any external girder or any two adjacent
internal girders or deck failure cause the bridge
failure.

These failure models are shown in Fig. 9 for Bridge
E-17-AH. With these failure modes, the reliability
analysis will be performed.

Because the data of severity 3 are too conservative,
the results are unrealistic. So, in this paper, the time
dependent system failure probability is shown for
each failure mode by using severity 4. The results are
shown as following.
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Failure of any external girder or any two adjacent internal
girders or deck failure cause the bridge failure

Where
D Deck failure
Gl and G10 = Exterior girder failure
G2, G3, G4, G5, G6, G7, G8, and G9
= Interior girder failure

Fig. 9 Failure Modes
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Fig. 10 Cumulative-Time System Failure Probability for the
First Failure Mode
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Fig. 11 Cumulative-Time System Failure Probability for the
Second Failure Mode
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Fig. 12 Cumulative-Time System Failure Probability for
the Third Failure Mode
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Fig. 13 Cumulative-Time System Failure Probability for the
Fourth Failure Mode

Fig. 10 to Fig. 13 show time-dependent system failure
probability for each failure mode. It is assumed that
each component for each failure mode is independent.
For the deck, the scale factor and shape factor are



0.0077/year and 2.37, respectively. And, for the
interior and exterior girders, the scale factor and shape
factor are 0.0106/year and 2.86.

5. Conclusion

In this paper, the system reliability concept and
lifetime distribution functions were used to develop
the program “‘LIFETIME". The main purpose of program
‘LIFETIME’ is to predict the time dependent system
failure probability. In order to apply the program
“LIFETIME to an existing bridge, very important data
were obtained in this paper. The program ‘LIFETIME’
may be applied to other structures which can be
modeled as a combination of series and parallel
systems. Because the program “LIFETIME’ gives the
time dependent system failure probability, the result
can be used for making the plan of the repair or
maintenance with a target system failure probability.
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