• Title/Summary/Keyword: Life distribution

Search Result 3,929, Processing Time 0.042 seconds

Stochastic Properties of Life Distribution with Increasing Tail Failure Rate and Nonparametric Testing Procedure

  • Lim, Jae-Hak;Park, Dong Ho
    • Journal of Applied Reliability
    • /
    • v.18 no.3
    • /
    • pp.220-228
    • /
    • 2018
  • Purpose: The purpose of this study is to investigate the tail behavior of the life distribution which exhibits an increasing failure rate or other positive aging effects after a certain time point. Methods: We characterize the tail behavior of the life distribution with regard to certain reliability measures such as failure rate, mean residual life and reliability function and derive several stochastic properties regarding such life distributions. Also, utilizing an L-statistic and its asymptotic normality, we propose new nonparametric testing procedures which verify if the life distribution has an increasing tail failure rate. Results: We propose the IFR-Tail (Increasing Failure Rate in Tail), DMRL-Tail (Decreasing Mean Residual Life in Tail) and NBU-Tail (New Better than Used in Tail) classes, all of which represent the tail behavior of the life distribution. And we discuss some stochastic properties of these proposed classes. Also, we develop a new nonparametric test procedure for detecting the IFR-Tail class and discuss its relative efficiency to explore the power of the test. Conclusion: The results of our research could be utilized in the study of wide range of applications including the maintenance and warranty policy of the second-hand system.

A Study on the Storage Life Estimation Method for Decrease of Muzzle Velocity using Gamma Process Model (감마과정 모델을 적용한 포구속도 저하량에 따른 저장수명 예측기법 연구)

  • Park, Sung-Ho;Kim, Jae-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.639-645
    • /
    • 2013
  • The aim of the study is to investigate the method to estimate a storage life of propelling charge on the decrease of muzzle velocity by stochastic gamma process model. It is required to establish criterion for state failure to estimate the storage life and it is defined in this paper as a muzzle velocity difference between reference value and maximum allowable standard deviation multiplied by 6. The relationship between storage time and muzzle velocity is investigated by nonlinear regression analysis. The stochastic gamma process model is used to estimated the state distribution and the life distribution for storage time for 155mm propelling charge KM4A2 because the regression analysis is a deterministic method and it can't describe the distribution of life for storage time.

타이어 공기압 센서의 가속수명시험을 통한 수명예측

  • Kim, Hyeong-Min;Wi, Sin-Hwan;Lee, Hui-Bok
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.41-48
    • /
    • 2011
  • In order to assess the reliability of the Tire Pressure Sensor for automobiles, accelerated life test model and procedure are developed. By using this method, failure mechanism and life distribution are analyzed. The main results are as follows; i) the main failure mechanism is degradation failure that is, PCB destruction and battery Discharge by high temperature. ii) the life distribution of the Tire Pressure Sensor fitted well to Weibull life distribution and the accelerated life model of that is fitted well to Arrhenius model. iii) at the result of the life distribution, accelerated life test method is developed

  • PDF

Estimation of Probability Distribution Fit for Fatigue Crack Propagation Life of AZ31 Magnesium Alloy (AZ31 마그네슘합금의 피로균열진전수명에 적합한 확률분포 평가)

  • Choi, Seon-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.707-719
    • /
    • 2009
  • The variables relating to the fatigue behavior have uncertainty and are random. The fatigue crack propagation is, thus, stochastic in nature. In this study, fatigue experiments are performed on the specimen of the magnesium alloy AZ31. The data of the fatigue life are scattered even in the same experimental condition. It is necessary to determine the probability distribution of the fatigue crack propagation life for the reliability analysis as well as the design and maintenance of structural components. Therefore the statistics and the probability distribution for the fatigue crack propagation life are investigated and the best fit probability distribution of that is proposed in this paper.

A Study on the Software Reliability Model Analysis Following Exponential Type Life Distribution (지수 형 수명분포를 따르는 소프트웨어 신뢰모형 분석에 관한 연구)

  • Kim, Hee Cheul;Moon, Song Chul
    • Journal of Information Technology Applications and Management
    • /
    • v.28 no.4
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, I was applied the life distribution following linear failure rate distribution, Lindley distribution and Burr-Hatke exponential distribution extensively used in the arena of software reliability and were associated the reliability possessions of the software using the nonhomogeneous Poisson process with finite failure. Furthermore, the average value functions of the life distribution are non-increasing form. Case of the linear failure rate distribution (exponential distribution) than other models, the smaller the estimated value estimation error in comparison with the true value. In terms of accuracy, since Burr-Hatke exponential distribution and exponential distribution model in the linear failure rate distribution have small mean square error values, Burr-Hatke exponential distribution and exponential distribution models were stared as the well-organized model. Also, the linear failure rate distribution (exponential distribution) and Burr-Hatke exponential distribution model, which can be viewed as an effectual model in terms of goodness-of-fit because the larger assessed value of the coefficient of determination than other models. Through this study, software workers can use the design of mean square error, mean value function as a elementary recommendation for discovering software failures.

Prediction of A Rise in Temperature Distribution of Mold Transformer for Power Distribution System (배전용 몰드변압기에 대한 상승 온도 분포 예측)

  • Lee, Jeong-Keun;Kim, Ji-Ho;Lee, Hyang-Beom
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.391-394
    • /
    • 2009
  • In this paper, achieved rise temperature distribution about degradation phenomenon of 2 MVA distribution mold transformer using finite element method (FEM). Usually, life of transformer is depended on temperature distribution of specification region than thermal special quality of transformer interior. Specially, life of transformer by decline of dielectric strength decreases rapidly in case rise by strangeness transformer interior hot spot temperature value permits. Because calculating high-voltage winding and low-voltage winding of mold transformer and Joule's loss of core for improvement these life, forecasted heat source, and high-voltage winding and low-voltage winding of mold transformer and rise temperature distribution of core for supply of electric power and temperature distribution of highest point on the basis of the result Also, calculated temperature rise limit of mold transformer and permission maximum temperature using analysis by electron miracle heat source alculate and forecasted rise temperature distribution by heat source of thermal analysis with calculated result.

  • PDF

Fatigue life prediction based on Bayesian approach to incorporate field data into probability model

  • An, Dawn;Choi, Joo-Ho;Kim, Nam H.;Pattabhiraman, Sriram
    • Structural Engineering and Mechanics
    • /
    • v.37 no.4
    • /
    • pp.427-442
    • /
    • 2011
  • In fatigue life design of mechanical components, uncertainties arising from materials and manufacturing processes should be taken into account for ensuring reliability. A common practice is to apply a safety factor in conjunction with a physics model for evaluating the lifecycle, which most likely relies on the designer's experience. Due to conservative design, predictions are often in disagreement with field observations, which makes it difficult to schedule maintenance. In this paper, the Bayesian technique, which incorporates the field failure data into prior knowledge, is used to obtain a more dependable prediction of fatigue life. The effects of prior knowledge, noise in data, and bias in measurements on the distribution of fatigue life are discussed in detail. By assuming a distribution type of fatigue life, its parameters are identified first, followed by estimating the distribution of fatigue life, which represents the degree of belief of the fatigue life conditional to the observed data. As more data are provided, the values will be updated to reduce the credible interval. The results can be used in various needs such as a risk analysis, reliability based design optimization, maintenance scheduling, or validation of reliability analysis codes. In order to obtain the posterior distribution, the Markov Chain Monte Carlo technique is employed, which is a modern statistical computational method which effectively draws the samples of the given distribution. Field data of turbine components are exploited to illustrate our approach, which counts as a regular inspection of the number of failed blades in a turbine disk.

A Reliability Analysis on the Fatigue Life Prediction in Carbon/Epoxy Composite Material (Carbon/Epoxy 복합재료의 피로수명예측에 관한 신뢰성 해석)

  • Jang, Seong-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.10 no.3
    • /
    • pp.143-147
    • /
    • 2007
  • In recents years, the statistical properties has become an important quantity for reliability based design of a component. The effects of the materials and test conditions for parameter estimation in residual strength degradation model are studied in carbon/epoxy laminate. It is shown that the correlation between the experimental results and the theoretical prediction on the fatigue life distribution using the life distribution convergence method is very reasonable.

  • PDF

Optimal M-level Constant Stress Design with K-stress Variables for Weibull Distribution

  • Moon, Gyoung-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.4
    • /
    • pp.935-943
    • /
    • 2004
  • Most of the accelerated life tests deal with tests that use only one accelerating variable and no other explanatory variables. Frequently, however, there is a test to use more than one accelerating or other experimental variables, such as, for examples, a test of capacitors at higher than usual conditions of temperature and voltage, a test of circuit boards at higher than usual conditions of temperature, humidity and voltage. A accelerated life test is extended to M-level stress accelerated life test with k-stress variables. The optimal design for Weibull distribution is studied with k-stress variables.

  • PDF

Deriving a Probabilistic Model for Fatigue Life Based on Physical Failure Mechanism

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.24 no.68
    • /
    • pp.1-7
    • /
    • 2001
  • A probabilistic model for fatigue life of a structural component is derived when the component is in a variable-amplitude loading environment. The physical mechanism which governs fatigue failure is used to model the fatigue life. Especially, the judgement of rotational symmetry in the-stress-intensity-factors results in the probability distribution for fatigue life. The probability distribution is related to the familiar truncated Gaussian distribution, which has a single parameter with a direct physical meaning.

  • PDF