
Journal of Korean

Data & Information Science Society

2004, Vol. 15, No. 4, pp. 935∼943

Optimal M-level Constant Stress Design

with K-stress Variables for Weibull Distribution
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Abstract

Most of the accelerated life tests deal with tests that use only one 
accelerating variable and no other explanatory variables. Frequently, 
however, there is a test to use more than one accelerating or other 
experimental variables, such as, for examples, a test  of capacitors at 
higher than usual conditions of temperature and voltage, a test of circuit 
boards at higher than usual conditions of temperature, humidity and 
voltage. A accelerated life test is extended to M-level stress accelerated 
life test with k-stress variables. The optimal design for Weibull 
distribution is studied with k-stress variables.
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1. Introduction

In many reliability studies, it may require a long testing times because the 

lifetimes of test units under the usual conditions tend to be long for extremely 

reliable units. As a common approach to shorten the lifetimes of test units, the 

accelerated life testings are widely used. Accelerated life testing quickly yields 

information on test unit. Testing units are subjected to conditions of greater stress 

and fail sooner than the usual conditions.

Using data from accelerated conditions, a model is fitted and then extrapolated 

to make inferences on the lifetimes, the reliability, failure rates, etc. under the 

usual conditions. Widely used methods of applying stress to test units are the 

constant stress test and the step stress test.

In constant stress testing, a test unit is subjected to a fixed stress and 

observed until it fails or is removed(censored). Meeker(1984) and Meeker and 
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Nelson(1975) considered the design for Type I censored constant stress accelerated 

life tests(ALTs) and gave the design the optimal test conditions and sample 

allocation. Nelson(1980, 1983, 1990) presented the cumulative exposure model 

analyzing the data from the step stress ALTs and studied the design to determine 

the optimal stress change time. Bai, Kim and Lee(1989) and Miller and 

Nelson(1983) obtained the stress change time which minimizes the asymptotic 

variance of maximum likelihood estimate of the log scale parameter at the design 

condition. Bai and Chung(1992) studied two optimal designs and compared the 

performances of two-step stress and constant stress partially ALTs under the 

tampered random variable model proposed DeGroot and Goel(1979). Khamis and 

Higgins(1996) derived optimum three-step stress test and evaluated several 

compromise plans when the lifetime of test unit for any stress is exponential. 

Khamis(1997a) studied the optimum designs for two-step stress and constant 

stress ALTs, and compared two tests under Weibull models. Khamis(1997b) also 

studied the M-step stress test with K-stress variables for exponential distribution.

In this paper, we consider the optimal designs for M-level constant stress ALTs 

with k-stress variables under Weibull distribution. In constant stress tests, one 

might expect to have censored data especially at the lower levels, while there 

would be little or no censoring at higher levels. We derive the optimal sample 

allocations when censoring occurs at the lower stress and the shape parameter is 

known. An appropriate model for log mean failure time is fit to data and the 

estimate of log mean failure time at usual condition is obtained. Maximum 

likelihood estimators(MLEs) of the parameters are also obtained, and the Fisher 

information matrix is derived.

2. Optimal M-level constant stress design 

with k-stress variables

Testing is done with M-level constant stress vectors ( )x11, x21, , xk1 , 

( )x12, x22, , xk2 , ,  ( )x1m, x2m, , xkm , where xli xlj, i j  and k+1 m, and the 

life distribution of the test unit for any stress is Weibull with known shape 

parameter.

For the M-level constant stress ALTs, ni , i =1,2 ,m units randomly chosen 

from n test units are put on each stress, and they are run until either failure 

occurs or censoring occurs at preassigned censoring time W. nui  is the number of 

test units failed at lower stress and nci  is the number of test units that are 

censored at a fixed censoring time W.

The scale parameter θi  at stress ( )x1i, x2i, , xki is given by 



Optimal M-level Constant Stress Design

with K-stress Variables for Weibull Distribution
937

log θi = γ0 + Σ
l =1

k

γi xli,          i = 1,2, ,m.                   (1)

In the presentation of our results, and without loss of generality, we use the 

yli =
xli − xl0

xlm− xl0
,   l = 1,2, , k,    , i = 1,2, ,m.

The model is 

log θi = 0 + Σ
l =1

k

i yli,          i = 1,2, ,m.                  (2)

The probability density function(p.d.f) for Weibull distribution under the constant 

stress ALTs with Type-I censoring at lower stress level can be written as

fi (w ) = i

θi
w i − 1

i exp






−
w i

i

θi

ci

exp






−
w i

i

θi

1− ci

,    0 wi W,      (3)

where ci =




1,    wi W
0,    wi>W  , i = 1,2, ,m.

The lifetimes of test units are independent and identically distributed. The 

Weibull distribution with known shape parameter i,  i = 1,2, ,m is transformed 

to the exponential distribution using the transformation Tij = W i

ij . That is

fi(t ) =
1
θi

exp






−
ti
θi

ci

exp






−
ti
θi

1− ci

,    0 ti T ,         (4)

where ci =




1,    ti T
0,    ti> T

 , i = 1,2, ,m.

The likelihood function from observation Tij = tij, i = 1,2, ,m,  j = 1,2, , ni  is

L(θ1, θ2, , θm) =  ∏ mi = 1 ∏ nui

j = 1






  
1
θi

  exp






 −  
tij
θi

   ∏ nci

j = 1








 exp 







−
T
θi

   ,       (5)

where nui  = the number of units failed at i-th stress vector,

       nci  = the number of censored at i-th stress vector.
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Substituting (2) for θi,  i = 1,2, ,m in (5), the log-likelihood function is given 

with unknown parameters 0, 1, , k  as follows;

log L( 0, 1, , k ) =− Σ
i = 1

m

  nui ( 0 + Σ
l = 1

k

  l  yli )− Σ
i= 1

m

Σ
j = 1

nui

  tij    exp (− 0 − Σ
l = 1

k

  l  yli )

− Σ
i = 1

m

nci  T   exp (− 0 − Σ
l = 1

k

  l  yli)

=− 0  Σ
i = 1

m

  nui − Σ
l = 1

k

 l  Σ
i= 1

m

nui  yli − Σ
i= 1

m

Ui   exp (− 0 − Σ
l = 1

k

l  yli ),

  (6)

where Ui = Σ
j= 1

nui

tij + nci  T  and it is the total test time at i-th stress vector

(x1i, x2i, , xki),  i = 1,2, ,m. 

Maximum likelihood estimators(MLEs) for the model parameters 0, 1, , k  can 

be obtained by solving the following equation using the Newton Raphson method.

         
∂  log  L( 0, 1, , k )

∂ 0
=− Σ

i = 1

m

nui + Σ
i = 1

m

Ui   exp (− 0 − Σ
l = 1

k

l  yli ),

∂  log  L( 0, 1, , k )

∂ s
=− Σ

i = 1

m

nui  ysi + Σ
i = 1

m

Ui  ysi   exp (− 0 − Σ
l = 1

k

l  yli ),

for s = 1,2, , k.

The Fisher information matrix is obtained by taking the expected value of the 

second partial and mixed partial derivatives of log  L( 0, 1, , k )  with respect to 

0, 1, , k .

             
∂  log  L( 0, 1, , k )

∂ 2
0

=− Σ
i = 1

m

Ui   exp (− 0 − Σ
l = 1

k

l  yli),

             
∂  log  L( 0, 1, , k )

∂ 0  ∂ s
=− Σ

i = 1

m

Ui  ysi   exp (− 0 − Σ
l = 1

k

l  yli ) ,

             
∂  log  L( 0, 1, , k )

∂ 2
s

=− Σ
i = 1

m

Ui  y
2
si   exp (− 0 − Σ

l = 1

k

l  yli),

             
∂  log  L( 0, 1, , k )

∂ s  ∂ t
=− Σ

i = 1

m

Ui  ysi  yti   exp (− 0 − Σ
l = 1

k

l  yli ) , 

where s≠ t = 1, 2, , k . It can be seen that
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F = n  

                                        

Σ
i = 1

m

Ai, Σ
i = 1

m

Ai  y1i, Σ
i = 1

m
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i = 1

m

Ai  yki

Σ
i = 1

m
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i = 1

m

Ai  y
2
1i, Σ

i = 1

m

Ai  y1i  y2i, , Σ
i = 1

m

Ai  y1i  yki

Σ
i = 1

m

Ai  yki, Σ
i = 1

m

Ai  y1i  yki, Σ
i = 1

m

Ai  y2i  yki, , Σ
i = 1

m

Ai  y
2
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,           (7)

where Ai = E(
nui

n
) =

ni

n








1 −  exp 






−
T
θi

    = φi  pi, i = 1,2, ,m.

We consider the optimal design with k + 1  stress vectors, which is the 

minimum number of stress vectors needed to fit the model in (2). The asymptotic 

variance multiplied by sample size, nAVC , of the MLEs of the log scale parameter 

at the usual stress (y10, y20, , yk0 )  is then given by

nAVC =  n(1, y10, y20, , yk0)F
− 1(1, y10, y20, , yk0)

t.              (8)

By differentiating (8) with respect to φi,  i = 1,2, ,m and equating to zero, the 

optimal sample proportions φ*
i ,  i = 1,2, ,m to be allocated at stress vector 

(y1i, y2i, , yki ) , i = 1,2, ,m  can be found, which minimize the asymptotic 

variance.

In practice, to find the optimal design, we must approximate the parameters by 

experience, similar data or preliminary test. 

Example 1 : we consider k = 2  as a special case. Suppose an optimal 3-level 

stress design with two stress variables is to be planned when the model is

 log   θi = 0 + 1  y1i + 2  y2i.

Then the asymptotic variance multiplied by the sample size at the usual stress is  

given by

nAVC =
d 2

1

A1
+

d 2
2

A2
+

d 2
3

A3

, 

where Ai = φi  pi, i = 1,2,3  and
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d 2
1 =

[(y12y23 − y13y22 )− y10 (y23 − y22 )− y20 (y12 − y13 )]
2

[y11 (y22 − y23 ) + y12 (y23 − y21 ) + y13 (y21 − y22 )]
2
,

d 2
2 =

[(y11y23 − y13y21 )− y10 (y23 − y21 )− y20 (y11 − y13 )]
2

[y11 (y22 − y23 ) + y12 (y23 − y21 ) + y13 (y21 − y22 )]
2
,

d 2
3 =

[(y11y22 − y12y21 )− y10 (y22 − y21 )− y20 (y11 − y12 )]
2

[y11 (y22 − y23 ) + y12 (y23 − y21 ) + y13 (y21 − y22 )]
2
.

Suppose that 0 = 0 , 1 =− 1.0  and 2 =− 5.0, and the stress vectors are 

(0.2,  0.3), (0.2,0.6)  and (1.0,1.0). If p1 = 0.6  is assumed, then p2 = 0.98  and 

p3 = 1.0. The optimal sample proportions are obtained by φ*
1 0.8 , φ*

2 0.1  and 

φ*
3 0.1 , respectively when nAVC =  8.053 .

Example 2 : The 40  simulated sample is given in Table 1 when 0, 1  and 2  

have the same values as in Example 1 and the number of data on 3-level stress 

are n1 = 32 , n2 = 4  and n3 = 4 . If p1 = 0.6  is assumed, then the censoring time is 

given by T = 0.16739. Then we fit the following model 

 log   θi = 0 + 1  y1i + 2  y2i.

The MLEs of  0, 1  and 2  by Newton-Raphson methods are obtained as 

 ̂0 = 0.0162,    ̂1 =− 1.0482 ,    ̂2 =− 4.8626.

And the observed information matrix, F̂, and covariance matrix, F̂ −1 , are given as 

follows: 

F̂ =

           
26.00 8.40 11.80
8.40 4.88 5.56
11.80 5.56 7.06

,

and

F̂ − 1 =

           
0.2133 0.3800 − 0.6559
0.3800 2.6717 − 2.7392

− 0.6559 − 2.7392 3.3951
,

which was determined by substituting the estimated values  ̂0 ,  ̂1  and  ̂2  in the 

asymptotic covariance matrix. 

To find the 95% confidence intervals for parameters, 0, 1  and 2, we can get 
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the standard errors of  ̂0,  ̂1  and  ̂2  by taking the square root of the diagonal 

elements of F̂ −1, and the 95%  confidence intervals,  ̂i z0.025SE (  ̂i )  for 0, 1  

and 2  are given by

− 0.889 0 0.921 ,

− 4.252 1 2.155 ,

− 8.474 2 − 1.251 .

Table 1. Simulated data with 2-stress variables based on

          0 = 0 , 1 =− 1.0 , 2 =− 5.0  and T = 0.1674

level stress Failure times

1 (y11, y21 ) = (0.2,0.3 )

0.0042 0.0154 0.0165 0.0196 0.0236

0.0283 0.0378 0.0451 0.0504 0.0553

0.0575 0.0701 0.0793 0.0854 0.1022

0.1181 0.1315 0.1654 0.1674 0.1674

0.1674 0.1674 0.1674 0.1674 0.1674

0.1674 0.1674 0.1674 0.1674 0.1674

0.1674 0.1674

2 (y12, y22 ) = (0.2, 0.6 ) 0.0026 0.0305 0.0543 0.0908

3 (y13, y23 ) = (1.0,1.0 ) 0.0005 0.0016 0.0037 0.0052

In order to use this optimal design, unknown parameters 0, 1  and 2  must be 

approximated by the past data set or preliminary test. However, the wrong 

pre-estimated values of parameters may not lead to optimal sample proportions 

and result in the poor estimators of parameters at the usual condition. Thus, the 

effects of the pre-estimated values of parameters are investigated. The wrong 

values of 0, 1  and 2  lead to wrong values of θi  and then pi, i = 1,2,3. So, the 

true values of p1  and p2  are assumed to be 0.6  and 0.8, respectively.

The behaviors of nAVC  relative to optimal nAVC  due to wrong pre-estimated 

values of  p1  and p2  are shown in Figure 1. If the pre-estimated value of p1  is 

not too far from true value, the nAVC  is likely to be stable even though the 

pre-estimated values of p2  is far from true value whereas the nAVC  seems to be 

very sensitive to wrong values of p1. This means that data gathered from the 

lower stresses plays more important role in estimating parameters at the usual 

conditions.
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Figure 1. The relative errors of nAVC
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