• Title/Summary/Keyword: Life cycle energy efficiency

Search Result 139, Processing Time 0.025 seconds

A semi-automated method for integrating textural and material data into as-built BIM using TIS

  • Zabin, Asem;Khalil, Baha;Ali, Tarig;Abdalla, Jamal A.;Elaksher, Ahmed
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.127-146
    • /
    • 2020
  • Building Information Modeling (BIM) is increasingly used throughout the facility's life cycle for various applications, such as design, construction, facility management, and maintenance. For existing buildings, the geometry of as-built BIM is often constructed using dense, three dimensional (3D) point clouds data obtained with laser scanners. Traditionally, as-built BIM systems do not contain the material and textural information of the buildings' elements. This paper presents a semi-automatic method for generation of material and texture rich as-built BIM. The method captures and integrates material and textural information of building elements into as-built BIM using thermal infrared sensing (TIS). The proposed method uses TIS to capture thermal images of the interior walls of an existing building. These images are then processed to extract the interior walls using a segmentation algorithm. The digital numbers in the resulted images are then transformed into radiance values that represent the emitted thermal infrared radiation. Machine learning techniques are then applied to build a correlation between the radiance values and the material type in each image. The radiance values were used to extract textural information from the images. The extracted textural and material information are then robustly integrated into the as-built BIM providing the data needed for the assessment of building conditions in general including energy efficiency, among others.

A Study on Typical Rates of Water-use for Primary School, Middle School and High School Facilities (초.중.고등학교 시설의 급수 사용량에 대한 연구)

  • Kim, Kyu-Saeng
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.510-515
    • /
    • 2007
  • A Study on Typical Rates of Water-use for School Facilities has been carried out in this work. Water supply system is given much weight in school facilities. Therefore, it set up a basis efficiency using of water sources to calculate typical rates of water use. The results are summarized as follows ; 1) On the whole, typical rates of water-use was founded out 15 L / stu. d in pirmary school, 10 L / stu. d in middle school and 30L / stu. d in high school smaller than the existing it. It was rate of water-use change as season and Max. Rates of water-use was July. 2) I deem that school hours are 5 hour's in primary school, 7 hour's in middle school and 8 hour's in high school. It the concept of 1 hour that is lesson time 40 minutes and resting time 10 minutes in primary school, lesson time 45 minutes and resting time 10 minutes in middle school and lesson time 50 minutes and resting time 10 minutes in high school. 3) It is desired that we calculate the volume of pump and water tank throughout this concept and the size of water tank should be 1.5 times with taking pick load into consideration by this study on typical rate of water-use. 4) The amount of using water increases in gradually and I consider the life cycle of facilities is more than 10 years. As a result, I can forecast that the size will be insufficiency but I deem that if we devise a plan about parallel pumping on water tank space, we can cope with it. Also, it is expected that we can cut back the transport energy by controlling pump volume.

  • PDF

Design and Evaluation of the Internet-Of-Small-Things Prototype Powered by a Solar Panel Integrated with a Supercapacitor

  • Park, Sangsoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.11
    • /
    • pp.11-19
    • /
    • 2021
  • In this paper, we propose a prototype platform combined with the power management system using, as an auxiliary power storage device, a supercapacitor that can be fast charged and discharged with high power efficiency as well as semi-permanent charge and discharge cycle life. For the proposed platform, we designed a technique which is capable of detecting the state of power cutoff or resumption of power supplied from the solar panel in accordance with physical environment changes through an interrupt attached to the micro-controller was developed. To prevent data loss in a computing environment in which continuous power supply is not guaranteed, we implemented a low-level system software in the micro-controller to transfer program context and data in volatile memory to nonvolatile memory when power supply is cut off. Experimental results shows that supercapacitors effectively supply temporary power as auxiliary power storage devices. Various benchmarks also confirm that power state detection and transfer of program context and data from volatile memory to nonvolatile memory have low overhead.

Smart City Framework Based on Geospatial Information Standards (공간정보 표준기반 스마트시티 프레임워크)

  • Eunbi Ko;Guk Sik Jeong;Kyoung Cheol Koo
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • Modern cities are actively adopting smart city services to address various urban challenges. Geospatial information acts as the foundational infrastructure of smart cities, promoting the sustainable development of urban areas. Consequently, as the standardization and utilization of geospatial information increase, the efficiency and sustainability of smart city operations improve. To achieve this, collaboration among diverse stakeholders is crucial for delivering optimal smart city services based on geospatial information. This paper defines smart city services, focusing on transportation and building-energy domains, based on the life cycle of geospatial information technology. Emphasis is placed on the importance of applying and utilizing geospatial information standards. Additionally, this paper proposes the Smart City based on Geospatial Information standards (SCGI) framework to provide insights into standardizing smart city services mapped to geospatial information standards. This research suggests a new paradigm for standardizing smart city services using geospatial information standards to offer customized solutions, thereby discussing the future development possibilities of smart cities.

A Basic Study for Sustainable Analysis and Evaluation of Energy Environment in Buildings : Focusing on Energy Environment Historical Data of Residential Buildings (빌딩의 지속가능 에너지환경 분석 및 평가를 위한 기초 연구 : 주거용 건물의 에너지환경 실적정보를 중심으로)

  • Lee, Goon-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.262-268
    • /
    • 2017
  • The energy consumption of buildings is approximately 20.5% of the total energy consumption, and the interest in energy efficiency and low consumption of the building is increasing. Several studies have performed energy analysis and evaluation. Energy analysis and evaluation are effective when applied in the initial design phase. In the initial design phase, however, the energy performance is evaluated using general level information, such as glazing area and surface area. Therefore, the evaluation results of the detailed design stage, which is based on the drawings, including detailed information of the materials and facilities, will be different. Thus far, most studies have reported the analysis and evaluation at the detailed design stage, where detailed information about the materials installed in the building becomes clear. Therefore, it is possible to improve the accuracy of the energy environment analysis if the energy environment information generated during the life cycle of the building can be established and accurate information can be provided in the analysis at the initial design stage using a probability / statistical method. On the other hand, historical data on energy use has not been established in Korea. Therefore, this study performed energy environment analysis to construct the energy environment historical data. As a result of the research, information classification system, information model, and service model for acquiring and providing energy environment information that can be used for building lifecycle information of buildings are presented and used as the basic data. The results can be utilized in the historical data management system so that the reliability of analysis can be improved by supplementing the input information at the initial design stage. If the historical data is stacked, it can be used as learning data in methods, such as probability / statistics or artificial intelligence for energy environment analysis in the initial design stage.

Analysis of Electrochemical Properties of Sulfide All-Solid-State Lithium Ion Battery Anode Material Using Amorphous Carbon-Removed Graphite (비정질 탄소가 제거된 흑연을 이용한 황화물계 전고체 리튬이온전지 음극소재 전기화학적 특성 분석)

  • Choi, Jae Hong;Oh, Pilgun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.58-63
    • /
    • 2022
  • Graphite has been used as an anode material for lithium-ion batteries for the past 30 years due to its low de-/lithiation voltage, high theoretical capacity of 372 mAh/g, low price, and long life properties. Recently, all-solid-state lithium-ion batteries (ASSLB), which are composed of inorganic solid materials with high stability, have received great attention as electric vehicles and next-generation energy storage devices, but research works on graphite that works well for ASSLB systems are insufficient. Therefore, we induced the performance improvement of ASSLB anode electrode graphite material by removing the amorphous carbon present in the carbon material surface, acting as a resistive layer from the graphite. As a result of X-ray diffraction (XRD) analysis using heat treated graphite in air at 400, 500, and 600 ℃, the full width at half maximum (FWHM) at (002) peak was reduced compared to that of bare graphite, indicating that the crystallinity of graphite was improved after heat treatment. In addition, the discharge capacity, initial coulombic efficiency (ICE) and cycle stability increased as the crystallinity of graphite increased after heat treatment. In the case of graphite annealed in air at 500 ℃, the high capacity retention rate of 331.1 mAh/g and ICE of 86.2% and capacity retention of 92.7% after 10-cycle measurement were shown.

Carbon Footprint Analysis of Mineral Paper using LCA Method (전과정 평가기법을 활용한 미네랄 페이퍼의 탄소발자국 연구)

  • Kim, Byoung Jik;Kang, Seong Min;Lee, Jeongwoo;Sa, Jae Hwan;Kim, Ik;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.201-210
    • /
    • 2013
  • In recent years, with the rising interest to reduce greenhouse gas emissions, the demand for using environmentally friendly product with low greenhouse gas emission is increasing in the printing industry as well. In this study, the carbon footprint of environmentally friendly product mineral paper that uses less plastic and wood than normal printing paper materials was analyzed by utilizing the life cycle assessment (LCA) technique. An analysis utilizing the LCA technique was done per the Korea carbon footprint certification guidelines and, for scope of study, it included the premanufacturing stage and manufacturing stage except for the use and disposal stages. As a result of the study, the emission coefficient of the mineral paper was calculated to be $0.81kg\;CO_2eq/kg$ and the emission from electricity usage of the entire greenhouse gas emission was calculated to be 45.85% ($0.37kg\;CO_2eq/kg$). In order to reduce greenhouse gas emission, required are the efforts to reduce the environmental loads by using energies that have relatively lower environmental loads, such as improvement in electricity usage efficiency and renewable energy, by increasing product completion rates during the manufacturing process of mineral paper.

Subject Selection Model of Green VE for Sustainable Design (친환경건축물 설계를 위한 Green VE 대상선정모델)

  • Song, Chang-Yeob;Moon, Hyun-Seok;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.3
    • /
    • pp.42-52
    • /
    • 2011
  • As environmental issues are rising recently efforts to reduce environmental stress are emerging in all industry segments. Especially environmental impact of buildings occupy a critical portion, so each country is operating green building rating system for life cycle of buildings. Accordingly green building rating system for every facility is operating in Korea. And acquisition of grade I for building energy efficiency is mandatory for every new public buildings since 2010. To design green building efficiently and systematically eco-friendly elements should be considered and checked from the schematic design phase. But in many cases eco-friendly elements are checked at the end of constructed design phase. So applying eco-friendly elements at the value engineering process, which is performing through schematic and constructed design phase, could make a efficient and systematic green building design. Value engineering process is divided into pre workshop, workshop and post workshop stages. And subject selection in pre workshop stage is the step that finds out the subjects which has the great possibility to be improved to perform efficient value engineering workshop. So this study present the Green VE subject selection model to select the most considerable eco-friendly subjects in projects.

Performance and Economic Analysis of Domestic Supercritical Coal-Fired Power Plant with Post-Combustion CO2 Capture Process (국내 초임계 석탄화력발전소에 연소 후 CO2 포집공정 설치 시 성능 및 경제성 평가)

  • Lee, Ji-Hyun;Kwak, No-Sang;Lee, In-Young;Jang, Kyung-Ryoung;Shim, Jae-Goo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.365-370
    • /
    • 2012
  • In this study, Economic analysis of supercritical coal-fired power plant with $CO_2$ capture process was performed. For this purpose, chemical absorption method using amine solvent, which is commercially available and most suitable for existing thermal power plant, was studied. For the evaluation of the economic analysis of coal-fired power plant with post-combustion $CO_2$ capture process in Korea, energy penalty after $CO_2$ capture was calculated using the power equivalent factor suggested by Bolland et al. And the overnight cost of power plant (or cost of plant construction) and the operation cost reported by the IEA (International Energy Agency) were used. Based on chemical absorption method using a amine solvent and 3.31 GJ/$tonCO_2$ as a regeneration energy in the stripper, the net power efficiency was reduced from 41.0% (without $CO_2$ capture) to 31.6% (with $CO_2$ capture) and the levelized cost of electricity was increased from 45.5 USD/MWh (Reference case, without $CO_2$ capture) to 73.9 USD/MWh (With $CO_2$ capture) and the cost of $CO_2$ avoided was estimated as 41.3 USD/$tonCO_2$.