• Title/Summary/Keyword: Life cycle

Search Result 5,715, Processing Time 0.036 seconds

Characterization of the Open Reading Frame 35 of Bombyx mori Nucleopolyhedrovirus

  • Zhu, Ying Min;Li, Guo Hui;Yao, Qin;Chen, Ke Ping;Guo, Zhong Jian
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2010
  • Open reading frame 35 (bm35) of the Bombyx mori nucleopolyhedrovirus (BmNPV) is a special gene whose homologues are only found in some group-I nucleopolyhedroviruses, suggesting that bm35 plays a specific role in the viral life cycle. This paper described the characterization of BmNPV bm35. Computerassisted sequence analysis shows that a putative RING finger motif is observed in the protein, Bm35 encoded by bm35. The coding sequence of bm35 was amplified and subcloned into the vector pET30a(+) and the $(His)_6$-tagged fusion protein His-Bm35 was expressed in the Escherichia coli BL21 (DE3) LysS cells. The bm35 transcript and Bm35 protein were detected in BmNPV-infected BmN cells at 12~48 h post infection (p.i.) by RT-PCR and Western blot analysis using the polyclonal antibody generated by immunizing a rabbit with purified $(His)_6$-tagged Bm35, suggesting that bm35 is synthesized in the late stage of BmNPV infection cycle. Bm35 was not a structural component associated with budded virus (BV) and occlusion derived virus (ODV). These data indicated that bm35 is a functional gene in the BmNPV life cycle.

A Study on the Effect of the Near Environmental Home Production Activities on the Life Satisfaction (근접환경자원을 이용한 가정생산활동이 생활만족도에 미치는 영향에 관한연구)

  • 문숙재
    • Journal of the Korean Home Economics Association
    • /
    • v.32 no.2
    • /
    • pp.33-48
    • /
    • 1994
  • This study was designed to demonstrate the wide scope of the home production activities. The purpose of this study are first to identify the factors affecting various near environmental home production activities second to examine the effect of the near environmental home production activities on the life satisfaction. Qustionnaires from 729 housewives in Seoul are analyzed in this study. The major findings are as follows: 1. Homeproduction activities with neighbors are influenced by the housewives' physical health. In the case of adult children family life cycle number of family members etc. are influential variables. In the case of step-parents and housewives' parents the number of family members family life-cycle etc. are influential variables. In the case of adult sisters housewives' birth order is influential variables. Home production activities utilizing facilities in the near environment are influenced by high-rise apartment housing tenure etc. Production activities through the participation in the organizations are influenced by family life cycle and similiarity to neighbors. 2. Production activities through the participation in the organizations home production activities with adult sisters and brothers and home production activities with adult childern have positive effect and home production activities utilizing facilities in the near environment have negative effect on the life satisfaction of the housewives. And the near environmental satisfaction affects on the life satisfaction of the housewives. Therefore the result of this study indicates that including the near environmental home production activities to the home production is rational.

  • PDF

Clamp Type-dependent HCF Life Estimation of the Overhead Cable for Distribution Grids (고정 방식 차이에 따른 배전 가공전선의 고주기피로 수명 특성 비교 평가)

  • Lee, Dooyoung;Jung, Jinseung;Kim, Youngdae;Bang, Jiye
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.241-248
    • /
    • 2021
  • High cycle fatigue life for the cables with two different types of clamps is estimated comparatively through acceleration testing. The high cycle fatigue fracture of overhead lines is caused mainly by the aeolian vibration which is induced by vortex shedding. It is necessary to manage the integrity of cables continuedly considering that the aeolian vibration is unavoidable since it occurs in steady and relatively low wind velocity. Two types of clamps which are largely used for overhead lines of the distribution grids are selected and failure data are obtained by step stress testing with a electrodynamic shaker with them. The inverse power law is assumed to describe the stress-life relationship and the fatigue limit at any specified life is supposed to follow Weibull distribution. The life of the cable is defined as the number of cycles to the time that one of strands is completely broken. Finally, the fatigue limits of the cables with two clamp types are estimated at the reference life of 500 Mcycles and compared each other based on a bending vibration amplitude.

Low-Cycle Fatigue Failure Prediction of Steel Yield Energy Dissipating Devices Using a Simplified Method

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1384-1396
    • /
    • 2018
  • One of the failure modes observed in steel yield energy dissipating devices (SYEDs) excited by a strong earthquake would be the low-cycle fatigue failure. Fatigue cracks of a SYED are prone to initiate at the notch areas where stress concentration is usually occurred, which is demonstrated by the cyclic tests and analyses carried out for this study. Since the fatigue failure of SYEDs dramatically deteriorates their structural capacities, the thorough investigation on their fatigue life is usually required. To do this, sophisticated modeling with considering a time-consuming and complicate fracture mechanism is generally needed. This study makes an effort to investigate the low-cycle fatigue life of SYEDs predicted by a simplified method utilizing damage indices and fatigue prediction equations that are based on the plastic strain amplitudes obtained from typical finite element analyses. This study shows that the low-cycle fatigue failure of SYEDs predicted by the simplified method can be conservatively in good agreement with the test results of SYED specimens prepared for experimental validation.

Life Cycle Cost Analysis at Design Stage of Cable Stayed Bridges based on the Performance Degradation Models (성능저하모델에 기초한 사장교의 설계단계 생애주기비용 분석)

  • Koo, Bon Sung;Han, Sang Hoon;Cho, Choong Yuen
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.2081-2091
    • /
    • 2013
  • Recently, the demand on the practical application of life-cycle cost effectiveness for design and rehabilitation of civil infrastructure is rapidly growing unprecedently in civil engineering practice. Accordingly, in the 21st century, it is almost obvious that life-cycle cost together with value engineering will become a new paradigm for all engineering decision problems in practice. However, in spite of impressive progress in the researches on the LCC, the most researches have only focused on the Deterministic or Probabilistic LCC analysis approach and general bridge at design stage. Thus, the goal of this study is to develop a practical and realistic methodology for the Life-Cycle Cost LCC-effective optimum decision-making based on reliability analysis of bridges at design stage. The proposed updated methodology is based on the concept of Life Cycle Performance(LCP) which is expressed as the sum of present value of expected direct/indirect maintenance costs with expected optimal maintenance scenario. The updated LCC methodology proposed in this study is applied to the optimum design problem of an actual highway bridge with Cable Stayed Bridges. In conclusion, based on the application of the proposed methods to an actual example bridge, it is demonstrated that a updated methodology for performance-based LCC analysis proposed in this thesis, shown applicably in practice as a efficient, practical, process LCC analysis method at design stage.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Life Cycle Assessment Considering Time (시간 개념을 고려한 전과정평가 방법)

  • Phungrassami, H.;Park, Jeoung-Gun;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.722-727
    • /
    • 2007
  • Life Cycle Assessment(LCA) is a tool that quantifies the inputs and outputs, md evaluates the potential environmental impacts during the entire life cycle of a product, material and/or service. Inputs and outputs encompass the consumption of natural resources and emission of pollutants to the environment. One of the deficiencies of the conventional LCA methodology is that it does not consider time explicitly. In addition, there are problems associated with the temporal boundary in the normalization step of LCA. The objective of this study is to propose a new life cycle assessment method that considers time in LCA as called 'Time Load LCA'. Basically Time Load LCA is a method that divides environmental load in each life cycle stage by time duration in each life cycle stage. Time consideration in the proposed method indicated that the new LCA method not only renders new perspective on the environmental impacts of a product system but also rectifies inconsistency in temporal dimension of the normalization step. Basic premise of the time load LCA method is that same amount of load over a shorter time period would affect more seriously on the environment than over a longer time period. therefore, load per time is necessary for the assessment of an impact of the inventory parameters on the environment.

Reliability-Optimal Design Method of High-Speed Railway Bridges Based upon Expected Life-Cycle Cost (기대생애주기비용에 기초한 고속철도교량의 신뢰성-최적설계 방안)

  • Lee, Woo-Sang;Bang, Myung-Seok;Han, Sung-Ho;Lee, Chin-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.102-110
    • /
    • 2010
  • The reliability evaluation may be a efficient method for estimating of the quantitative structural safety considering the effect of uncertainties included in high-speed railway bridges. The expected life-cycle cost(LCC) based upon the reliability evaluation will reasonably offer the safety level and design criteria of high-speed railway bridges. Therefore, this study determined the expected life-cycle cost and optimal design method of high-speed railway bridges on the basis of the result of the numerical analysis and reliability evaluation. For this, after creating various design method based upon the standard design of high-speed railway bridges, the numerical analysis is conducted on each of the alternative design methods. The reliability evaluation by the design strength limit state function is conducted considering the effect of external uncertainties on the basis of the numerical analysis result. The expected life-cycle cost of high-speed railway bridges is calculated on the basis of the reliability evaluation result by each of the alternative design methods. Also, the optimal design method is determined using the calculated expected life-cycle cost. In addition, The result of reliability evaluation and expected life-cycle cost of optimal design method are examined considering the effect of internal uncertainties. It is expected that the result of this study can be used as a basic information for the systematic safety evaluation and optimal structure design of high-speed railway bridges.

Lifetime Reliability Based Life-Cycle Cost-Effective Optimum Design of Steel Bridges (생애 신뢰성에 기초한 강교의 LCC최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, CheolJun;Kim, Seong Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.75-89
    • /
    • 2006
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology of steel bridges considering time effect of bridge reliability under environmental stressors such as corrosion and heavy truck traffics. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure which depends upon the prior and updated load and resistance histories should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model considering corrosion initiation, corrosion rate, and repainting effect are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40 m+50 m+40 m=130 m), and various sensitivity analyses of types of steel, local corrosion environments, average daily traffic volume, and discount rates are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the number of truck traffics significantly influence the LCC-effective optimum design of steel bridges, and thus realized that these conditions should be considered as crucial parameters for the optimum LCC-effective design.

A Study on Elemental Technology Identification of Sound Data for Audio Forensics (오디오 포렌식을 위한 소리 데이터의 요소 기술 식별 연구)

  • Hyejin Ryu;Ah-hyun Park;Sungkyun Jung;Doowon Jeong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.34 no.1
    • /
    • pp.115-127
    • /
    • 2024
  • The recent increase in digital audio media has greatly expanded the size and diversity of sound data, which has increased the importance of sound data analysis in the digital forensics process. However, the lack of standardized procedures and guidelines for sound data analysis has caused problems with the consistency and reliability of analysis results. The digital environment includes a wide variety of audio formats and recording conditions, but current audio forensic methodologies do not adequately reflect this diversity. Therefore, this study identifies Life-Cycle-based sound data elemental technologies and provides overall guidelines for sound data analysis so that effective analysis can be performed in all situations. Furthermore, the identified elemental technologies were analyzed for use in the development of digital forensic techniques for sound data. To demonstrate the effectiveness of the life-cycle-based sound data elemental technology identification system presented in this study, a case study on the process of developing an emergency retrieval technology based on sound data is presented. Through this case study, we confirmed that the elemental technologies identified based on the Life-Cycle in the process of developing digital forensic technology for sound data ensure the quality and consistency of data analysis and enable efficient sound data analysis.