• Title/Summary/Keyword: LiDAR Surveying

Search Result 214, Processing Time 0.023 seconds

Comparative study for height accuracy of Full waveform LiDAR data (Full waveform LiDAR의 높이 정확도 비교 분석)

  • Ryu, Joong-Hi;Lee, Jae-Hwan;Koh, Seung-Bum;Kim, Back-Seok;Seo, Hae-Soo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.257-263
    • /
    • 2011
  • There are many previous researches such as verification of accuracy, application, and change detection of discrete return LiDAR data, but no researches for full waveform LiDAR data. In this study, we selected the forest area and urban area as case study areas and compared the height accuracy of full waveform LiDAR data with field surveying data. As a result, we got an RMSE of 3.lcm in urban area, 4.7cm in forest area, and it is verified that height accuracy of full waveform LiDAR is high. We think that it is very usefull in aerial photogrammetry.

Applications of LiDAR in Cadastral Surveying (지적측량에 라이다 측량기술의 활용방안)

  • Kang, Joon-Mook;Min, Kwan-Sik;Wie, Gwang-Jae;Kim, Jae-Myoung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.443-446
    • /
    • 2007
  • The major purpose of the present study is to gauge the general applicability of cadastral surveying and LiDAR surveying. LiDAR survey is the method which obtains Geospatial information of the terrain. We will get a most topographic models at Digital Elevation Model(DEM) using LiDAR survey data. Also, we will consider both the surface parcel partition and volume parcel as a part of Geospatial relationship model. This study will focus on enhancing the efficiency and analysis of continual cadastral map and LiDAR DEM. I would like to close by proposing that LiDAR surveying will contribute in cadastral surveying.

  • PDF

Accuracy Assessment of LiDAR DEM Using GPS (GPS에 의한 LiDAR DEM의 정확도 평가)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Lee, Chang-Bok;Park, Joon-Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.443-451
    • /
    • 2006
  • DEM has been used for various purposes overall fields of engineering, the fields of civil engineering, military, communication, environment, and so forth and its applications are being extending increasingly. It is well hewn that LiDAR DEM is definitely superior to the other surveying methods. But LiDAR DEM run short of a full study about vertical accuracy. In order to assess LiDAR DEM, total 35 stations were selected and surveyed by GPS for utilizing as reference data. And then accuracy of LiDAR DEM was analyzed by comparison between both LiDAR DEM and CPS surveying. The RMSE of ${\pm}0.109m$ was shown in vertical direction. It is within the permissible accuracy required for mapping on a scale of 1 to 500 and 1 to 1000 on the mapping rule notified by the National Geographic Information Institute. It is expected that the results of this study will be fully used in the field of large scale DEM generation and be utilized as basic information in applied field of LiDAR DEM.

Plane Position Accuracy Analysis of Extracted Data from LiDAR (LiDAR 추출 자료의 평면위치 정확도 분석)

  • Yoon Hee-Cheon;Park Joung-Hyun;Lee Chang-Bok;Kang Joon-Mook
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.119-124
    • /
    • 2006
  • The world which based on knowledge and information is changing significantly. In the various knowledge and information, the importance of GSIS has increased for efficient application and management of country. The Geomatics has made a change rapidly, observation methods have improved too. The existing acquisition of Geoinformation depend on aerial photogtaphs, but new technology Jike application of high resolution satellite images. SAR and LiDAR, is the fastest. especially, LiDAR surveying is most advanced active observation technology and Geoinfomtation is acquired by reflection of its laser pulse. In this study. the position accuracy of extracted building from LiDAR was evaluated by GPS surveying, then each data was made comparison between LiDAR's and GPS's data. After processing. the result of this study will be suggested basic data about application.

  • PDF

Adjustment of Exterior Orientation of the Digital Aerial Images using LiDAR Points

  • Yoon, Jong-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.5
    • /
    • pp.485-491
    • /
    • 2008
  • LiDAR systems are usually incorporated a laser scanner and GPS/INS modules with a digital aerial camera. LiDAR point clouds and digital aerial images acquired by the systems provide complementary spatial information on the ground. In addition, some of laser scanners provide intensity, radiometric information on the surface of the earth. Since the intensity is unnecessary of registration and provides the radiometric information at a certain wavelength on the location of LiDAR point, it can be a valuable ancillary information but it does not deliver sufficient radiometric information compared with digital images. This study utilize the LiDAR points as ground control points (GCPs) to adjust exterior orientations(EOs) of the stereo images. It is difficult to find exact point of LiDAR corresponding to conjugate points in stereo images, but this study used intensity of LiDAR as an ancillary data to find the GCPs. The LiDAR points were successfully used to adjust EOs of stereo aerial images, therefore, successfully provided the prerequisite for the precise registration of the two data sets from the LiDAR systems.

Comparison of the Accuracy to the Surveying Data by Terrestrial LiDAR and Total Station (지상LiDAR와 토탈스테이션에 의한 측량성과의 정확도 비교분석)

  • Yang, In-Tae;Shin, Moon-Seung;Lee, Sung-Koo;Shin, Myung-Seup
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.9-15
    • /
    • 2011
  • Nowadays, the Surveying field is growing rapidly in terms of technology such as TS(Total Station) surveying, photographic surveying, digital aerial photogrammetry, utilization of GIS(Geographic Information System) using high-resolution satellite imagery, obtaining 3D Coordinate using GPS. But control point surveying, benchmark measuring, and field Surveying are still performed by the engineers in the field. So, 3D yerrestrial laser scanner comes to the fore recently. 3D terrestrial laser scanner can get 3D coordinate about a number of sites of the subject in a short period with high accuracy. This paper compared the accuracy of data from the performance using 3D terrestrial laser scanner with that of TS. It also obtained the geopositioning accuracy result equivalent to the surveying result of TS. With further researches in the future, it is expected to be used not only in LiDAR itself but also in various areas like reconnaissance Surveying and construction by combining with TS or other Surveying equipments.

  • PDF

Airborne LiDAR Simulation Data Generation of Complex Polyhedral Buildings and Automatic Modeling (다양한 건물의 항공 라이다 시뮬레이션 데이터 생성과 자동 모델링)

  • Kim, Jung-Hyun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.235-238
    • /
    • 2010
  • Since the mid 1990s airborne LiDAR data have been widely used, automation of building modeling is getting a central issue. LiDAR data processing for building modeling is involved with extracting surface patch elements by segmentation and surface fitting with optimal mathematical functions. In this study, simulation LiDAR data were generated with complex polyhedral roofs of buildings and an automatic modeling approach was proposed.

  • PDF

Development of LiDAR Drone-based Point Cloud Data Accuracy Verification Technology (드론 LiDAR를 활용한 점군 데이터 정확도 검증 기술 개발)

  • Jae-Woo Park;Dong-Jun Yeom
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1233-1241
    • /
    • 2023
  • This paper investigates the efficient application of drone LiDAR technology for acquiring precise point cloud data in construction and civil engineering. A structured workflow encompassing data acquisition, processing, and accuracy verification is introduced. Practical testing on a construction site affirms that drone LiDAR surveying yields accurate and reliable data across various applications. With a focus on accuracy and verification, the results contribute to the progression of surveying methodologies in construction and civil engineering. The findings provide valuable insights into the dynamic technological landscape of these fields, establishing a foundation for more effective and precise surveying techniques. This study underscores the transformative potential of drone LiDAR technology in shaping the future of construction and civil engineering survey practices.

Tunnel Reverse Engineering Using Terrestrial LiDAR (지상LiDAR를 이용한 터널의 Reverse Engineering)

  • Cho, Hyung Sig;Sohn, Hong Gyoo;Kim, Jong Suk;Lee, Suk Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.931-936
    • /
    • 2008
  • Surveying by using terrestrial LiDAR(Light Detection And Ranging) is more rapid than by using total station which enables tunnel section profile surveying to be done in suitable time and minimize centerline error, occurrence of overcut and undercut. Therefore, utilization of terrestrial LiDAR has increased more and more in section profile survey and measurement field Moreover, studies of terrestrial LiDAR for accurate and efficient utilization is now ongoing vigorously. Average end area formula, which was generally used to calculate overcut and undercut, was compared with existing methods such as total station survey and photogrammetry. However, there are no criteria of spacing distance for calculating overcut and undercut through terrestrial LiDAR surveying which can acquire 3D information of whole tunnel. This research performed reverse engineering to decide optimal spacing distance when surveying tunnel section profile by comparing whole tunnel volume and tunnel volume in difference spacing distance. This result was utilized to produce CAD drawing for the test tunnel site where there is no design drawings. In addition to this, efficiency of LiDAR and accuracy of CAD drawing was compared with targetless total station surveying of tunnel section profile. Finally, error analysis of target coordinate's accuracy and incidence angle was done in order to verify the accuracy of terrestrial LiDAR technology.

Road design applied to the Air LiDAR data for basic research (항공 LiDAR 데이터를 도로설계에 적용하기 위한 기초연구)

  • Jang, Eun-Seok;Yun, Hong-Sic;Kim, Yong-Hyeon;Bae, Hyung-Look
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.263-266
    • /
    • 2010
  • The research design of the road for the LiDAR survey data was available, LiDAR data currently exists for this area Daejeon, Gongju area two map sheet selected of the LiDAR data and figures were produced using the DEM, respectively. The scale 1 / 5, 000 of figures produced by using the DEM and LiDAR DEM data comparing the results produced by the difference in some areas or That could be found. The accuracy of LiDAR data in the road design to use more accurate information on terrain, roads and construction of the linear installation cost savings Contribution will be considered.

  • PDF