• Title/Summary/Keyword: LiDAR자료

Search Result 291, Processing Time 0.024 seconds

The Monitoring of Sediment on the Basin Using LiDAR Data (LiDAR 자료를 이용한 유역의 퇴적물 모니터링)

  • Kang Joon-Mook;Kang Young-Mi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.27-36
    • /
    • 2006
  • Most of domestic multipurpose dams were basin area to be large, therefore, soil loss were occurred by downpour in the rainy season, They have caused to accumulate sediments on the river and dam reservoir that brought the decrease of storage volume and difficulties of the quality management of water. Until now, the measurement cycle of sediments surveying was long and it was designed to use surveying the degree of sediments, Thus there were many difficult things to secure accuracy. In this study, it was intended to analyze the origin position tracing of sediments and the movement route, for this purpose, aerial LiDAR technology was applied to precise sediments surveying. The amount and location of soil loss were evaluated by classified properties of soil, land-cover, and topographical conditions in detail. Therefore, the reliance could be maintained in analyzing the route of soil loss by extracting the flow within a watercourse and using the advanced accurate DEM.

Automatic Generation of DEM using LIDAR Data (LiDAR 데이터를 이용한 DEM 자동 생성 기법)

  • Lee, Jeong-Ho;Han, Su-Hee;Yu, Ki-Yun;Kim, Yong-Il;Lee, Byung-Kil
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.4 s.34
    • /
    • pp.27-32
    • /
    • 2005
  • DEM is needed for urban modeling, forecasting of floods and the analysis of slope and aspect. It has been generated using digital maps, aerial photos or satellite imageries. Recently, however, many studies on DEM generation from LiDAR data has been conducted because of its efficiency and accuracy. Filtering is said to be the process of making DEM by eliminating non-ground points from LiDAR data. In most researches, some input parameters such as the size of filter are required. The purpose of this investigation is to automatically obtain DEM by eliminating objects of various sizes without the knowledge of the objects' sizes. The experimental results show that most of objects on steep terrain are eliminated by the proposed method.

  • PDF

Monitoring Landcreep Using Terrestrial LiDAR and UAVs (지상라이다와 드론을 이용한 땅밀림 모니터링 연구)

  • Jong-Tae Kim;Jung-Hyun Kim;Chang-Hun Lee;Seong-Cheol Park;Chang-Ju Lee;Gyo-Cheol Jeong
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.27-37
    • /
    • 2023
  • Assessing landcreep requires long-term monitoring, because cracks and steps develop over long periods. However, long-term monitoring using wire extensometers and inclinometers is inefficient in terms of cost and management. Therefore, this study selected an area with active landcreep and evaluated the feasibility of monitoring it using imagesing from terrestrial LiDAR and drones. The results were compared with minute-by-minute data measured in the field using a wire extensometer. The comparison identified subtle differences in the accuracy of the two sets of results, but monitoring using terrestrial LiDAR and drones did generate values similar to the wire extensometer. This demonstrates the potential of basic monitoring using terrestrial LiDAR and drones, although minute-byminute field measurements are required for analyzing and predicting landcreep. In the future, precise monitoring using images will be feasible after verifying image analysis at various levels and accumulating data considering climate and accuracy.

Analysis of Airborne LiDAR-Based Debris Flow Erosion and Deposit Model (항공LiDAR 자료를 이용한 토석류 침식 및 퇴적모델 분석)

  • Won, Sang Yeon;Kim, Gi Hong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.59-66
    • /
    • 2016
  • The 2011 debris flow in Mt. Umyeonsan in Seoul, South Korea caused significant damages to the surrounding urban area, unlike other similar incidents reported to have occurred in the past in the country's mountainous regions. Accordingly, landslides and debris flows cause damage in various surroundings, regardless of mountainous area and urban area, at a great speed and with enormous impact. Hence, many researchers attempted to forecast the extent of impact of debris flows to help minimize the damage. The most fundamental part in forecasting the impact extent of debris flow is to understand the debris flow behavior and sedimentation mechanism in complex three-dimensional topography. To understand sedimentation mechanism, in particular, it is necessary to calculate the amount of energy and erosion according to debris flow behavior. The previously developed debris flow models, however, are limited in their ability to calculate the erosion amount of debris flow. This study calculated the extent of damage caused by a massive debris flow that occurred in 2011 in Seoul's urban area adjacent to Mt. Umyeonsan by using DEM, created from aerial photography and airborne LiDAR data, for both before and after the damage; and developed and compared a debris flow behavioral analysis model that can assess the amount of erosion based on energy theory. In addition, simulations using the existing debris flow model (RWM, Debris 2D) and a comprehensive comparison of debris flow-stricken areas were performed in the same study area.

The analysis of Photovoltaic Power using Terrain Data based on LiDAR Surveying and Weather Data Measurement System (LiDAR 측량 기반의 지형자료와 기상 데이터 관측시스템을 이용한 태양광 발전량 분석)

  • Lee, Geun-Sang;Lee, Jong-Jo
    • Journal of Cadastre & Land InformatiX
    • /
    • v.49 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • In this study, we conducted a study to predict the photovoltaic power by constructing the sensor based meteorological data observation system and the accurate terrain data obtained by using LiDAR surveying. The average sunshine hours in 2018 is 4.53 hours and the photovoltaic power is 2,305 MWh. In order to analyze the effect of photovoltaic power on the installation angle of solar modules, we installed module installation angle at $10^{\circ}$ intervals. As a result, the generation time was 4.24 hours at the module arrangement angle of $30^{\circ}$, and the daily power generation and the monthly power generation were the highest, 3.37 MWh and 102.47 MWh, respectively. Therefore, when the module arrangement angle is set to $30^{\circ}$, the generation efficiency is increased by about 4.8% compared with the module angle of $50^{\circ}$. As a result of analyzing the influence of the seasonal photovoltaic power by the installation angle of the solar module, it was found that the photovoltaic power was high in the range of $40^{\circ}{\sim}50^{\circ}$, where the module angle was large from November to February when the weather was cold. From March to October, it was found that the photovoltaic power amount is $10^{\circ}{\sim}30^{\circ}$ with small module angle.

Classification of Terrestrial LiDAR Data Using Factor and Cluster Analysis (요인 및 군집분석을 이용한 지상 라이다 자료의 분류)

  • Choi, Seung-Pil;Cho, Ji-Hyun;Kim, Yeol;Kim, Jun-Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.139-144
    • /
    • 2011
  • This study proposed a classification method of LIDAR data by using simultaneously the color information (R, G, B) and reflection intensity information (I) obtained from terrestrial LIDAR and by analyzing the association between these data through the use of statistical classification methods. To this end, first, the factors that maximize variance were calculated using the variables, R, G, B, and I, whereby the factor matrix between the principal factor and each variable was calculated. However, although the factor matrix shows basic data by reducing them, it is difficult to know clearly which variables become highly associated by which factors; therefore, Varimax method from orthogonal rotation was used to obtain the factor matrix and then the factor scores were calculated. And, by using a non-hierarchical clustering method, K-mean method, a cluster analysis was performed on the factor scores obtained via K-mean method as factor analysis, and afterwards the classification accuracy of the terrestrial LiDAR data was evaluated.

Region Growing Method for Calculating Unmeasured Rate of Aerial LiDAR Data (항공라이다의 결측률 산출을 위한 영역확장 기법)

  • Han, Soung-Man;Kim, Ji-Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • The airborne LiDAR which was introduced in the early 2000's provides the point data. The new methods for the verification of LiDAR materials with high accuracy which is different from the existing airborne survey are needed. In accordance with the rules of airborne laser survey which were enacted in 2009, the verifications by three methods of Unmeasured Rate and point accuracy, point density have been executed, and Unmeasured Rate is to evaluate the rate for the presence of points within uniform grids except non-reflective areas such as watershed areas. For the calculation of Unmeasured Rate, non-reflective areas should be removed by all means, and in case of normal LiDAR materials, as there are scant points for watershed areas, watershed areas should be divided by additional spatial information. So, in this study, the watershed areas were extracted using domain extension technique from the high resolution CIR images of 0.3m grade. In addition, in order to compare the accuracy of Unmeasured Rate calculated, the comparative analysis of the Unmeasured Rate calculated by digital maps has been done. In conclusion, we found that 1I1e accuracy of Unmeasured Rate extracted by domain extension technique is similar to the value extracted by digitizing technique.

A Study on Mapping 3-D River Boundary Using the Spatial Information Datasets (공간정보를 이용한 3차원 하천 경계선 매핑에 관한 연구)

  • Choung, Yun-Jae;Park, Hyen-Cheol;Jo, Myung-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.87-98
    • /
    • 2012
  • A river boundary is defined as the intersection between a main stream of a river and the land. Mapping of the river boundary is important for the protection of the properties in river areas, the prevention of flooding and the monitoring of the topographic changes in river areas. However, the utilization of the ground surveying technologies is not efficient for the mapping of the river boundary due to the irregular surfaces of river zones and the dynamic changes of water level of a river stream. Recently, the spatial information data sets such as the airborne LiDAR and aerial images are widely used for coastal mapping due to the acquisition of the topographic information without human accessibility. Due to these advantages, this research proposes a semi-automatic method for mapping of the river boundary using the spatial information data set such as the airborne LiDAR and the aerial photographs. Multiple image processing technologies such as the image segmentation algorithm and the edge detection algorithm are applied for the generation of the 3D river boundary using the aerial photographs and airborne topographic LiDAR data. Check points determined by the experienced expert are used for the measurement of the horizontal and vertical accuracy of the generated 3D river boundary. Statistical results show that the generated river boundary has a high accuracy in horizontal and vertical direction.

Efficient Construction Method of Topographic Data for Flood Mapping Using Digital Map (수치지형도를 활용한 홍수지도 제작용 지형자료의 효과적인 구축방법 연구)

  • Lee, Geun-Sang;Koh, Deuk-Koo;Kim, Woo-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.1
    • /
    • pp.52-61
    • /
    • 2004
  • Korea Water Resources Corporation carried out LiDAR survey to construct detailed terrain data for flood mapping and it is expected that much money is required in flood mapping of all over the country. Therefore, it is desirable to use NGIS digital map to construct preliminary modelling data for selection of flood mapping area. And the analysis of DEM error with respect to scale of digital map is necessary for the sake of applying digital map as the input data of flood mapping. We compared DEM from digital map with DEM from LiDAR survey. Especially we analyzed DEM error characteristics that is occurred with respect to the interpolation method that is used to construct DEM from TIN of digital map. As a result of analysis, digital map(1:1,000) showed smaller error than digital map(1:5,000) and DEM applying linear interpolation showed smaller error than DEM applying quintic interpolation. Especially, variation of DEM error by cell resolution was evaluated as very slight because urban district was composed of gentle slope.

  • PDF

The Comparative Analysis of Reservoir Capacity of Chungju Dam based on Multi Dimensional Spatial Information (다차원 공간정보 기반의 충주댐 저수용량 비교분석)

  • Lee, Geun Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5D
    • /
    • pp.533-540
    • /
    • 2010
  • Dam is very important facility in water supply and flood control. Therefore study needs to analyze reservoir capacity accurately to manage Dam efficiently. This study compared time series reservoir capacity using multi-dimensional spatial information to Chungju Dam reservoir and major conclusions are as follows. First, LiDAR and multi beam echo sounder survey were carried out in land zone and water zone of Dam reservoir area. And calibration process was performed to enhance the accuracy of survey data and it could be constructed that multi dimensional spatial information which was clearly satisfied with the standard of tolerance error by validation with ground control points. Reservoir capacity by water level was calculated using triangle irregular network from detailed topographic data that was constructed by linked with airborne LiDAR and multi beam echo sounder data, and curve equation of reservoir capacity was developed through regression analysis in 2008. In the comparison of the reservoir capacity of 2008 with those of 1986 and 1996, the higher water level goes, total reservoir capacity of 2008 showed decrease because of the increase of sediment in reservoir. Also, erosion and sediment area could be analyzed through calculating the reservoir capacity by the range of water level. Especially the range of water level as 130.0~135.0 which is the upper part of average water level, showed the highest erosion characteristics during 1986~2008 and 1996~2008 and it is considered that the erosion of reservoir slant by heavy rainfall is major reason.