• 제목/요약/키워드: Li-Metal Batteries

검색결과 119건 처리시간 0.031초

리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향 (Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells)

  • 윤홍관;김다희;김천중;김용진;민지호;정남기
    • 세라미스트
    • /
    • 제21권4호
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

NCM계 리튬이온 배터리 양극재의 그라파이트 첨가 탄산화 배소와 수침출에 의한 Li 회수 (Lithium Recovery from NCM Lithium-ion Battery by Carbonation Roasting with Graphite Followed by Water Leaching)

  • 이소연;이대현;이소영;손호상
    • 자원리싸이클링
    • /
    • 제31권4호
    • /
    • pp.26-33
    • /
    • 2022
  • 리튬이온배터리의 수요가 증가함에 따라 향후 발생할 폐리튬이온배터리 중의 유가금속 회수가 필요하다. 대량의 폐리튬이온배터리 리사이클링에는 건식제련이 적합하지만 Li이 슬래그나 분진으로 손실되는 문제점이 있다. 본 연구에서는 폐리튬이온배터리의 NCM계 양극재로부터 Li을 회수하기 위해 그라파이트 첨가에 따른 탄산화 배소와 수침출 거동에 대해 조사하였다. 그라파이트를 10 wt% 첨가 시, Ar 및 CO2 분위기에서 승온 중 약 850 K에서 급격한 무게 감소와 함께 CO 및 CO2 가스가 배출되었다. 급격한 무게 감소 후 NCM은 금속 산화물 및 순금속으로 분해되고 환원되었다. 따라서 블랙파우더(NCM+그라파이트)의 탄산화 배소에서는 NCM의 분해에 의해 O2가 발생하면서 Li2O, NiO 등의 산화물이 생성되고, 이어서 Li2O가 CO2와 반응하여 Li2CO3를 생성하며, NiO의 일부는 그라파이트에 의해 환원되어 금속 Ni을 생성한다. 그리고 탄산화 배소 후 수침출에 의해 약 99.95 % 순도의 Li2CO3를 최대 94.5 %까지 회수하였다.

Enhanced Stability of LiCoO2 Cathodes in Lithium-ion Batteries Using Surface Modification by Atomic Layer Deposition

  • Jung, Yoon-S.;Cavanagh, Andrew S.;Dillon, Anne C.;Groner, Markus D.;George, Steven M.;Lee, Se-Hee
    • 한국세라믹학회지
    • /
    • 제47권1호
    • /
    • pp.61-65
    • /
    • 2010
  • Ultrathin atomic layer deposition (ALD) coatings were found to enhance the performance of lithium-ion batteries (LIBs). Previous studies have demonstrated that $LiCoO_2$ cathode powders coated with metal oxides with thicknesses of $\sim100-1000{\AA}$ grown using wet chemical techniques improved LIB performance. In this study, $LiCoO_2$ powders were coated with conformal $Al_2O_3$ ALD films with thicknesses of only $\sim3-4{\AA}$ established using 2 ALD cycles. The coated $LiCoO_2$ powders exhibited a capacity retention of 89% after 120 charge-discharge cycles in the 3.3~4.5 V (vs. $Li/Li^+$) range. In contrast, the bare $LiCoO_2$ powders displayed only a 45% capacity retention. This dramatic improvement may result from the ultrathin $Al_2O_3$ ALD film acting to minimize Co dissolution or to reduce surface electrolyte reactions.

최근 휴대폰용 배터리의 기술개발 동향 (Recent Trend of Lithium Secondary Batteries for Cellular Phones)

  • 이형근;김영준;조원일
    • 전기화학회지
    • /
    • 제10권1호
    • /
    • pp.31-35
    • /
    • 2007
  • 이 리뷰를 통하여, 휴대폰용 리튬이차전지의 최근 기술동향을 설명하였다. 휴대폰용 이차전지로는 니카드, 니켈-금속수소, 리튬이온 혹은 리튬이온폴리머의 세 가지 형태의 전지가 있으며, 리튬 이차전지가 에너지밀도 측면에서 가장 성능이 우수하다. 즉, 동일한 용량을 갖는 이차전지 가운데 가장 작고 가벼운 것은 리튬이차전지이다. 이러한 리튬이차전지의 시장은 매년 약 15%의 높은 성장을 기록하고 있다. 연구개발은 $LiFePO_4$를 포함하는 새로운 양극, $Li_4Ti_5O_{10}$, Si, 주석 등의 새로운 음극소재, 새로운 전해질과 안정성 확보에 관한 것을 중심으로 진행되고 있다.

Synthesis and Electrochemical Properties of FexNbS2/C Composites as an Anode Material for Li Secondary Batteries

  • Kim, Yunjung;Kim, Jae-Hun
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.250-257
    • /
    • 2022
  • Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.

Li(Ni1-x-yCoxMny)O2계 이차전지 공정 스크랩으로부터 회수한 전이금속을 활용한 리튬이차전지 양극재 제조 (Preparation of Cathode Materials for Lithium Rechargeable Batteries using Transition Metals Recycled from Li(Ni1-x-yCoxMny)O2 Secondary Battery Scraps)

  • 이재원;김대원;장성태
    • 한국분말재료학회지
    • /
    • 제21권2호
    • /
    • pp.131-136
    • /
    • 2014
  • Cathode materials and their precursors are prepared with transition metal solutions recycled from the the waste lithium-ion batteries containing NCM (nickel-cobalt-manganese) cathodes by a $H_2$ and C-reduction process. The recycled transition metal sulfate solutions are used in a co-precipitation process in a CSTR reactor to obtain the transition metal hydroxide. The NCM cathode materials (Ni:Mn:Co=5:3:2) are prepared from the transition metal hydroxide by calcining with lithium carbonate. X-ray diffraction and scanning electron microscopy analyses show that the cathode material has a layered structure and particle size of about 10 ${\mu}m$. The cathode materials also exhibited a capacity of about 160 mAh/g with a retention rate of 93~96% after 100 cycles.

리튬이온이차전지용 고밀도 양극활물질의 합성 및 평가 (Synthesized and Characterization of high density cathode materials for Lithium Secondary Batteries)

  • 권용진;최병현;지미정;선양국
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.429-429
    • /
    • 2008
  • Li$[Ni_{1/2}Co_{1/2}]O_2$ powder were synthesized from co-precipitation spherical metal oxide, $[Ni_{1/2}Co_{1/2}](OH)_2$. The preparation of metal hydroxide was significantly dependent on synthetic conditions, such as pH, amount of chelating agent, stirring speed, etc. The optimized condition resulted in $[Ni_{1/2}Co_{1/2}](OH)_2$, of which the particle size distribution was uniform and the particle shape was spherical, as observed by scanning electron microscopy. Calcination of the uniform metal hydroxide with LiOH at higher temperature led to a well-ordered layer-structured Li$[Ni_{1/2}Co_{1/2}]O_2$, as confirmed by X-ray diffraction pattern. Also these materials have ${\alpha}-NaFeO_2$ ($R\bar{3}m$) structure. Due to the homogeneity of the metal hydroxide, $[Ni_{1/2}Co_{1/2}](OH)_2$, the final product, Li$[Ni_{1/2}Co_{1/2}]O_2$, was also significantly uniform, i.e., the average particle size was of about 10 to 15 ${\mu}m$ in diameter and the distribution was relatively narrow. As a result, the corresponding tap-density was also high approximately 2.41 $gcm^{-3}$, of which the value is comparable to that of commercialized $LiCoO_2$.

  • PDF

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

리튬이온전지에서 새로운 양극재료를 위한 금속인산화물 (Lithium Transition Metal Phosphate Cathodes for Advanced Lithium Batteries)

  • 정성윤
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2003년도 추계학술발표강연 및 논문개요집
    • /
    • pp.26-26
    • /
    • 2003
  • Lithium storage electrodes for rechargeable batteries require mixed electronic-ionic conduction at the particle scale in order to deliver desired energy density and power density characteristics at the device level. Recently, lithium transition metal phosphates of olivine and Nasicon structure type have become of great interest as storage cathodes for rechargeable lithium batteries due to their high energy density, low raw materials cost, environmental friendliness, and safety. However, the transport properties of this family of compounds, and especially the electronic conductivity, have not generally been adequate for practical applications. Recent work in the model olivine LiFePO$_4$, showed that control of cation stoichiometry and aliovalent doping results in electronic conductivity exceeding 10$^{-2}$ S/cm, in contrast to ~10$^{-9}$ S/cm for high purity undoped LiFePO$_4$. The increase in conductivity combined with particle size refinement upon doping allows current rates of >6 A/g to be utilized while retaining a majority of the ion storage capacity. These properties are of much practical interest for high power applications such as hybrid electric vehicles. The defect mechanism controlling electronic conductivity, and understanding of the microscopic mechanism of lithiation and delithiation obtained from combined electrochemical and microanalytical techniques, will be discussed

  • PDF