• Title/Summary/Keyword: Li-Al-Si glass and ceramic

Search Result 32, Processing Time 0.025 seconds

The properties of glass ceramics of Li2O-Al2O3-SiO2 system according to nucleation agent (조핵제 원료에 따른 Li2O-Al2O3-SiO2계 결정화 유리 특성)

  • Park, Hyun-Wook;Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Ra, Yong-Ho;Noh, Myoung-Rae;Seo, Kwan-Hee;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.229-234
    • /
    • 2018
  • The glass-ceramic of $Li_2O-Al_2O_3-SiO_2$ system was synthesized by using $ZrO_2$, $ZrSiO_4$, $ZrOCl_2$ and $Zr(SO_4)_2$, which is a raw material of Zr serving as a nucleation agent. It was confirmed that Avrami parameter of these four glasses is over 3 for bulk crystallization. The glass synthesized by $ZrOCl_2$, and $Zr(SO_4)_2$ showed high melting quality during the melting process. It is also observed that the Zr component is uniformly distributed in the glass. Various characterizations was evaluated, including composition analysis and bending strength.

A Study of Sintering Behavior and Crystallization in Li2O-Al2O3-SiO2 (LAS) Glass System by RSM (RSM 법에 의한Li2O-Al2O3-SiO2 (LAS) 유리의 소결 거동과 결정화에 대한 연구)

  • Lee, Kyu-Ho;Kim, Young-Seok;Jung, Young-Joon;Kim, Tae-Ho;Seo, Jin-Ho;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.8
    • /
    • pp.451-456
    • /
    • 2007
  • This paper presents results and observations obtained from a study of sintering behavior and crystallization in $Li_2O-Al_2O_3-SiO_2$ (LAS) Glass by screen printing method. The variable experimental conditions were determined carefully by Thermal-Mechanical Analyzer (TMA), Differential Thermal Analyzer (DTA) for setting the optimum transparent sintering conditions in LAS glass system, $10.5Li_2O-14.7Al_2O_3-58.1SiO_2-16.7B_2O_3(wt%)$, such as glass-ceramics which usually have low crystallization temperatures. Crystallization glasses generated during sintering was observed from diffraction patterns by X-Ray Diffraction (XRD), transmittance by UV-Vis spectrometer. Finally, the optimum sintering condition of LAS glass and the relation between factors and results in several sintering conditions were given by using Response Surface Methodology (RSM). From this study, we confirmed that crystallization interrupted densification during glass powder sintering. Furthermore, we observed that main effect of factors in glass powder sintering with concurrent crystallization depended on experimental conditions from main effects plot by MINTAB-14.

Studied on the Crystallization of $Li_2O-Al_2O_3-SiO_2$ Glass by Adding $TiO_2$ and $ZrO_2$ ($TiO_2$$ZrO_2$의 첨가에 따르는 $Li_2O-Al_2O_3-SiO_2$ 계 유리의 결정화에 관한 연구)

  • 박용완;전문덕
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.3
    • /
    • pp.187-191
    • /
    • 1981
  • The effect of additions, $TiO_2$ and $ZrO_2$ as nucleant on the base glass which composition was determined to 0.97 $Li_2O-Al_2O_3-SiO_2$ has been investigated by means of D.T.A., X-ray diffraction and dilatation. $TiO_2$ and $ZrO_2$ as nucleant were added 0.06mole, in which ratios of $TiO_2$/$ZrO_2$ were varied 1/0, 2/1, 1/1, 1/2 and 0/1. The crystalline phases were appeared to $\beta$-spodumene as principal, $\beta$-eucryptite and $ZrO_2$ as secondary, regardless of nucleant variations. The crystallinity of the crystallized glass added $TiO_2$, $ZrO_2$ mixture as nucleant was higher than that of the glass added $TiO_2$ or $ZrO_2$ only. The crystallinity of the glass added $TiO_2$/$ZrO_2$ =1/1 was highest. Increasing the addition of $ZrO_2$, it has been observed that the crystal growing temperature became higher.

  • PDF

Effect of Various Oxides on Crystallization of Lithium Silicate Glasses (다양한 산화물들이 리튬규산염 유리의 결정화에 미치는 영향)

  • Kim, Chul-Min;Lim, Hyung-Bong;Kim, Youg-Su;Kim, Se-Hoon;Oh, Kyung-Sik;Kim, Cheol-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.4
    • /
    • pp.269-277
    • /
    • 2011
  • Glass-ceramics based on lithium disilicate($Li_2Si_2O_5$) are prepared by heat-treatment of glasses in a system of $SiO_2-Li_2O-K_2O-Al_2O_3$ with different compositions. The crystallization heat-treatment was conducted at the temperature range of $700{\sim}900^{\circ}C$ and samples were analyzed by XRD and SEM. Mechanical properties were determined by a Vicker's hardness and 4 point bending strength. When $SiO_2/Li_2O$ ratio increased, cristobalite and tridymite crystals showed more predominate than lithium disilicate crystals. Increase in $Al_2O_3$ contents in the glass suppressed crystallzation of lithium disilicate crystals. Increase in ZnO, $B_2O_3$ contents in the glass decreased crystallization temperature of lithium disilicate crystals, and increased mechanical properties because of the reduction of the lithium disilicate crystal size.

The properties of glass ceramic of LAS system with Y2O3 and Fe2O3 (Y2O3와 Fe2O3가 포함된 LAS 계 결정화 유리 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Lee, Youngjin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.4
    • /
    • pp.154-159
    • /
    • 2019
  • The glass-ceramic of $Li_2O-Al_2O_3-SiO_2$ system was fabricated by using yttrium oxide and iron oxide that it can reduce the melting temperature and affect the homogenization. Zirconium sulfate was used as a nucleation agent. Calcium phosphate was used to improve the flow the glass so as reduce the viscosity of the glass. The glass-ceramics met a thermal shock test of more than $750^{\circ}C$ and the temperature at which the coefficient of thermal expansion rapidly increased at over $800^{\circ}C$ was shifted by about the above $30^{\circ}C$. Therefore, it is concluded that the glass-ceramic of $Li_2O-Al_2O_3-SiO_2$ system with yttrium oxide and iron oxide was founded to have good melting conditions and excellent thermal expansion resistance at high temperature such as special field for kitchen utensils.

Manufacture and Characterization of Low Firing Temperatur Substrate using Glass Ceramics with Fluorine (Fluorine 함유 Glass Ceramics를 이용한 저온 소결기판 제조 및 기판의 특성 평가)

  • 강원호
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1996
  • Lithium fluorhectorite 결정상을 함유한 glass ceramics 분말의 형성과 제조된 glass ceramics 분말을 이용한 저온 소결기판의 특성평가를 하였다. Li2O-MgO-MgF2-SiO2 계 유 리로 핵형성 및 결정 성장을 실시하여 lithium fluorhectorite 결정상을 지닌 glass ceramics 를 제조하였다. 유리시편의 핵형성 온도는 46$0^{\circ}C$였고 결정성장온도는 600, 640, 110$0^{\circ}C$에서 나타났다. $600^{\circ}C$에서의 결정상으 Li2.4LiSi4O10F2가 나타났다. Li2.4Mg8LiSi4와 Li2.8Mg0.6SiO4은 lithium fluorhectorite 결정상으로 되기 위한 중간상임을 확인할수 있었다. 64$0^{\circ}C$에서 열처리 후 110$0^{\circ}C$에서 재열처리하여 형성된 결정은 lithium fluorhectorite 와 tridymite가 최종 결정 상으로 나타났다. 이것은 수중에서 water swelling 현상에 의하여 분말화할 수 있었다, 기판 제조용 slurry를 제조하기 위해 glass ceramics 분말에 Al2O3분말을 0,25,50wt%로 혼합한것 과 glass ceramics 분말에 potashborosilica-te glass 분말을 15, 30, 45, 60 wt% 로 배합하 여 doctor blade 법으로 green sheet를 제조하였다. green sheet 는 950~150$0^{\circ}C$로소성하여 기판의 특성을 평가하였다. 겉보기 기공율은 3.06~19,14%이었고, 전기적 특성으로 유전상수 는 3~5(100KHz)를 나타내었다.

Preparation of Ultra-Low Thermal Expansion L$i_2$O-A$l_2$$O_3$-Si$O_2$ Glass-Ceramics by Sol-gel Technique (졸-겔 방법에 의한 $Li_2O-Al_2O_3-SiO_2$계 저열팽상성 결정화유리의 제조)

  • Yang, Jung-Sik;Kim, Jong-Beom;Yang, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.3 no.3
    • /
    • pp.207-214
    • /
    • 1993
  • Glass-ceramic monoliths with an ultra-low thermal expansion coefficient have been synthesized by the sol-gel technique using metal alkoxides as starting materials and dimethyl formamide as a drying control chemical additive. The ternary gels: $Li_2O\cdot Al_2O_3\cdot 2, 4 or $6SiO_2$ were obtained by hydrolysis and polycondensation reactions of metal alkoxides of silicon, aluminum and lithium. To produce cylindrical crack-free gel monoliths, excess water was used to the starting solutions and drying rates were controlled precisely to prevent cracking. In conversion process ,${\beta}$-eucryptite, $Li_2O\cdot Al_2O_3\cdot 3SiO_2$ and P-spodumene with ,${\beta}$-quartz solid solution phase were obtained by heating at the range of 750 ~$1000^{\circ}C$. Above $800^{\circ}C$, the ,${\beta}$-spodumene phase increased while ,${\beta}$-eucryptite phase decreased. The thermal expansion coefficient of the crystallized specimens were -15~ $+5{\times}{10^{-7}}/{\circ}C$ over the temperature range from room temperature to $600^{\circ}C$.

  • PDF

Effects of Titania Whisker Precipitation on Wear Property of the Glass-Ceramic (타이타니아 단섬유상의 석출이 결정화유리의 마모특성에 미치는 영향)

  • 이경호
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.192-202
    • /
    • 1996
  • In Li0.4Ca0.05AlP0.5Si0.75O4.5 composition glass, glass-ceramic having a near 100% crystallinity after nucleation heat treatment of 74$0^{\circ}C$/2 h and crystallization heat treatment of 90$0^{\circ}C$/2 h and in-situ TiO2 whisker reinforced glass-ceramic after heat treatment of 105$0^{\circ}C$ for 20 h were fabricated with the addition of 4% TiO2 as a nucleating agent. With these materials a ball-on-disc type wear test was conducted in order to examine the effect of TiO2 whisker prepcipitation on ambient and high temperature wear properties of the glass-ceramic. Wear test results indicated that all specimens exhibited micro-fracture wear mechanism in ambient temperature. As temperature increased the wear rates of the materials were increased. However the in-situ TiO2 whisker reinforced glass-ceramic exhibited the lowest wear rate over the test temperature range. This resulted from the improvement of harness and fracture toughness of the material as the glass converted into the glass-ceramic followed by precipitation of TiO2 whiskers throughout the glass-ceramic matrix.

  • PDF

Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (I) Preparation of Porous Monolithic Gel in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Method (Sol-Gel법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 결정화 유리의 제조 : (I) Sol-Gel 방법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$계 다공성 겔체의 제조)

  • 조훈성;양중식;권창오;이현호
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.7
    • /
    • pp.535-542
    • /
    • 1993
  • It was investigated in this study that a preparation method, activation energy, surface area, pore volume, pore size distribution and DTA analysis of the dry gel in process of producing monolithic porous gel in Li2O-Al2O3-TiO2-SiO2 system by the sol-gel technique using metal alkoxides. Activation energy for gellation according to the variation of water concentration and the kind of catalysts ranged from 10 to 20kcal/mole. Monolithic dry gels were prepared after drying at 9$0^{\circ}C$ when the amount of water for gellation was 4~8 times more than the stoichiometric amount, that was necessary for the full hydrolysis of the mixed metal alkoxide. The specific surface area, the pore volume, the average pore radius of the dried gel at 18$0^{\circ}C$ according to the various kinds of catalyst were about 348~734$m^2$/g, 0.35~0.70ml/g and 10~35$\AA$, respectively. It showed that the dry gels were porous body. As a result ofthe analysis of DTA, it was confirmed that the exothermaic peaks at 715$^{\circ}C$ and 77$0^{\circ}C$ was clue to the crystallization of dried gel.

  • PDF

Nucleation and Crystal Growth of $\beta$-eucryptite in a Glass of the Molecular Composition Li2O.Al2O3.2SiO2 (Li2O.Al2O3.2SiO2의 조성을 갖는 유리에서 $\beta$-eucryptite의 핵생성 및 결정성장)

  • 이상현;장수진
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.3
    • /
    • pp.53-59
    • /
    • 1985
  • Nucleation and crystallization of $\beta$-eucryptite in a glass of molecular percentage composition Li2O.Al2O3.2SiO2 are studied. The glasses are made by quenching of the melts from 143$0^{\circ}C$ to room temperature. Heat-treatment for nucleation and crystal growth are caried out at various temperature in the range between 50$0^{\circ}C$ and 80$0^{\circ}C$ with different duration of time. The amounts of crystallization are estimated by the method of x-ray powder diffraction. As the results a time-temperature-transformation relation for crystallization is derived. The maximum rate of crystallization is observed at about 75$0^{\circ}C$ from the T-T-T-curve while the crystallization temperature is detected at 67$0^{\circ}C$ by DTA measurement. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percents of TiO2 and it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5. The crystallization temperature moved to 62$0^{\circ}C$ by adding 5 weight percent of TiO2 it moved to 78$0^{\circ}C$ by adding 2 weight percents of V2O5 The activation energy for crystallization from the pure glass is calculated as 68 Kcal/mol and it varied to 53 Kcal/mol and 110Kcal/mol when 5 weight percents of TiO2 and weight percents of V2O5 are added respectively.

  • PDF