• Title/Summary/Keyword: Li secondary batteries

Search Result 174, Processing Time 0.025 seconds

Electrical Characteristics of Li(Mn$_{1-}$$\delta$Nb$\delta$)$_2$O$_4$ Cathode Materials for Li-Ion Secondary Batteries (리튬 이온 이차전지 Cathode용 Li(Mn$_{1-}$$\delta$Nb$\delta$)$_2$O$_4$의 전기적 특성)

  • 오용주;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.995-1001
    • /
    • 1998
  • As a basic study for cathode materials of {{{{ { {LiMn }_{2 }O }_{4 } }}-based lithium-ion secondary batteries Li({{{{ { { { {Mn }_{1-$\delta$ }Nb }_{$\delta$} )}_{2 }O }_{4 } }} ($\delta$=0.05, 0.1, 0.2) materials which Nb is substituted for Mn were synthesized by the solid state reaction at 80$0^{\circ}C$ and 110$0^{\circ}C$ respectively. The second phase {{{{ { LiNbO}_{3 } }} appeared above $\delta$=0.1 As the result of im-pedance analysis as the amount of substituted Nb increased the resistivity of grain boundary increased greatly. Compared to undoped-{{{{ { {LiMn }_{2 }O }_{4 } }} the electrical conductivity of Li({{{{ { { { {Mn }_{1-$\delta$ }Nb }_{$\delta$} )}_{2 }O }_{4 } }} decreased slightly but is charging capacity and potential plateau increased.

  • PDF

Recent Trend of Lithium Secondary Batteries for Cellular Phones (최근 휴대폰용 배터리의 기술개발 동향)

  • Lee, H.G.;Kim, Y.J.;Cho, W.I.
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.31-35
    • /
    • 2007
  • In this review article, we are going to explain the recent development of lithium secondary batteries for a cellular phone. There are three kinds of rechargeable batteries for cellular phones such as nickel-cadmium, nickel-metal hydride, and lithium ion or lithium ion polymer. The lithium secondary battery is one of the most excellent battery in the point of view of energy density. It means very small and light one among same capacity batteries is the lithium secondary battery. The market volume of lithium secondary batteries increases steeply about 15% annually. The trend of R&D is focused on novel cathode materials including $LiFePO_4$, novel anode materials such as lithium titanate, silicon, and tin, elecrolytes, and safety insurance.

On eliminating electrochemical impedance signal noise using Li metal in a non-aqueous electrolyte for Li ion secondary batteries

  • Park, Chul-Wan
    • Carbon letters
    • /
    • v.12 no.3
    • /
    • pp.180-183
    • /
    • 2011
  • Li metal is accepted as a good counter electrode for electrochemical impedance spectroscopy (EIS) as the active material in Li-ion and Li-ion polymer batteries. We examined the existence of signal noise from a Li-metal counter quantitatively as a preliminary study. We suggest an electrochemical cell with one switchable electrode to obtain the exact impedance signal of active materials. To verify the effectiveness of the switchable electrode, EIS measurements of the solid electrolyte interphase (SEI) before severe $Li^+$ intercalation to SFG6 graphite (at > ca. 0.25 V vs. Li/$Li^+$) were taken. As a result, the EIS spectra without the signal of Li metal were obtained and analyzed successfully for the following parameters i) $Li^+$ conduction in the electrolyte, ii) the geometric resistance and constant phase element of the electrode (insensitive to the voltage), iii) the interfacial behavior of the SEI related to the $Li^+$ transfer and residence throughout the near-surface (sensitive to voltage), and iv) the term reflecting the differential limiting capacitance of $Li^+$ in the graphite lattice.

Lithium/Sulfur Secondary Batteries: A Review

  • Zhao, Xiaohui;Cheruvally, Gouri;Kim, Changhyeon;Cho, Kwon-Koo;Ahn, Hyo-Jun;Kim, Ki-Won;Ahn, Jou-Hyeon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.97-114
    • /
    • 2016
  • Lithium batteries based on elemental sulfur as the cathode-active material capture great attraction due to the high theoretical capacity, easy availability, low cost and non-toxicity of sulfur. Although lithium/sulfur (Li/S) primary cells were known much earlier, the interest in developing Li/S secondary batteries that can deliver high energy and high power was actively pursued since early 1990’s. A lot of technical challenges including the low conductivity of sulfur, dissolution of sulfur-reduction products in the electrolyte leading to their migration away from the cathode, and deposition of solid reaction products on cathode matrix had to be tackled to realize a high and stable performance from rechargeable Li/S cells. This article presents briefly an overview of the studies pertaining to the different aspects of Li/S batteries including those that deal with the sulfur electrode, electrolytes, lithium anode and configuration of the batteries.

Solid Electrolyte Technologies for Next-Generation Lithium Secondary Batteries (차세대 리튬이차전지용 고체 전해질 기술)

  • Kim, K.M.;Oh, J.M.;Shin, D.O.;Kim, J.Y.;Lee, Y.G.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.76-86
    • /
    • 2021
  • Technologies for lithium secondary batteries are now increasingly expanding to simultaneously improve the safety and higher energy and power densities of large-scale battery systems, such as electric vehicles and smart-grid energy storage systems. Next-generation lithium batteries, such as lithium-sulfur (Li-S) and lithium-air (Li-O2) batteries by adopting solid electrolytes and lithium metal anode, can be a solution for the requirements. In this analysis of battery technology trends, solid electrolytes, including polymer (organic), inorganic (oxides and sulfides), and their hybrid (composite) are focused to describe the electrochemical performance achievable by adopting optimal components and discussing the interfacial behaviors that occurred by the contact of different ingredients for safe and high-energy lithium secondary battery systems. As next-generation rechargeable lithium batteries, Li-S and Li-O2 battery systems are briefly discussed coupling with the possible use of solid electrolytes. In addition, Electronics and Telecommunications Research Institutes achievements in the field of solid electrolytes for lithium rechargeable batteries are finally introduced.

Recent Developments in Anode Materials for Li Secondary Batteries (리튬이차전지용 음극 소재 기술 개발 동향)

  • Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.3
    • /
    • pp.211-222
    • /
    • 2008
  • Li secondary batteries, which have been in successful commercialization, are becoming important technology as power sources in non-IT application like HEV(Hybrid Electric Vehicle) as well as in portable electronics. It is not the overstatement that the commercialization of Li secondary battery was a result of the development of carbonaceous anode material and safety mechanisms. The R&D of electrode materials of Li secondary batteries is one of the core technologies in the development and it has enormous influences on various fields as well as on the battery industry. Here, the current research of anode materials is described and the underlying problems associated with development, advantages and drawbacks is analyzed.

The Impeditive Properties and Charge/Discharge of Positive Active Material $LiMnO_2$ (정극 활물질 LiMnO2 충.방전과 임피던스 특성)

  • Wi, Seong-Dong;Kim, Jong-Ok;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.299-305
    • /
    • 2003
  • The battery industries have been developed to the implementation of lithium ion secondary cell from the cell of Ni/Cd and Ni/MH in the past to be asked of an age of high technology from low technology. Also in resent the polymeric cell to get a good high function with an age of new advanced information system is changed from the 21 century to the secondary batteries society. The properties of lithium secondary batteries have the high energy density, the long cycle time, the low self discharge area and the high active voltage. The wanted properties of secondary batteries for the motion of an apparatuses of industries of an high skill age have a small type trend of the energy density and it is become with a strong asking of the industrial society market about the storable medium of the convenience and new power energy. The electrochemical properties is researched for the cell to be synthesised and crystallized the positive active material LiMnO2 of the secondary cell at 9250C to get a new improved data of the electric discharge for that the capacitance of the LiMnO2 thin film that is improving and researching with the properties and a merit and demerit in the this kind of asking.

  • PDF

Effects of Cathode Composition for $LiV_3O_8$/Li Secondary Battery ($LiV_3O_8$/Li 이차전지의 복합양극의 조성에 따른 영향)

  • 박수길;김종진;이홍기;엄재석;전세호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.29-32
    • /
    • 1998
  • A new treatment of LiV$_3$O$_{8}$ has beer proposed for improving its electrochemical behavior as a cathode material secondary lithium batteries. Early in its development, the preparation method of LiV$_3$O$_{8}$ strongly influenced its electrochemical properties, such as discharge capacity, rate capability and cycling efficiency. In the present experiment, a new synthesis route has been applied to obtain LiV$_3$O$_{8}$ . Instead of the conventional high temperature technique leading to the crystalline form, a solution technique producing the amorphous form has been used. This material, after dehydration, shows an electrochemical performance exceeding that of the crystalline one. These measurements showed that the ultrasonic treatment process of crystalline LiV$_3$O$_{8}$ causes a decrease in crystallinity and considerable increases in specific surface area and interlayer spacing. So the ultrasonic method provides a convenient means for improving the electrochemical behavior of LiV$_3$O$_{8}$ as a cathode material for secondary lithium batteries.batteries.

  • PDF

Fabrication of LiNiO2 using NiSO4 Recovered from NCM (Li[Ni,Co,Mn]O2) Secondary Battery Scraps and Its Electrochemical Properties (NCM(Li[Ni,Co,Mn]O2)계 폐 리튬이차전지로부터 NiSO4의 회수와 이를 이용한 LiNiO2 제조 및 전기화학적 특성)

  • Kwag, Yong-Gyu;Kim, Mi-So;Kim, Yoo-Young;Choi, Im-Sic;Park, Dong-Kyu;Ahn, In-Sup;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.21 no.4
    • /
    • pp.286-293
    • /
    • 2014
  • The electrochemical properties of cells assembled with the $LiNiO_2$ (LNO) recycled from cathode materials of waste lithium secondary batteries ($Li[Ni,Co,Mn]O_2$), were evaluated in this study. The leaching, neutralization and solvent extraction process were applied to produce high-purity $NiSO_4$ solution from waste lithium secondary batteries. High-purity NiO powder was then fabricated by the heat-treatment and mixing of the $NiSO_4$ solution and $H_2C_2O_4$. Finally, $LiNiO_2$ as a cathode material for lithium ion secondary batteries was synthesized by heat treatment and mixing of the NiO and $Li_2CO_3$ powders. We assembled the cells using the $LiNiO_2$ powders and evaluated the electrochemical properties. Subsequently, we evaluated the recycling possibility of the cathode materials for waste lithium secondary battery using the processes applied in this work.

Electrical Characteristics of Cathode Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$ Substituted by Transition Metals in Li-Ion Secondary Batteries (전이금속 치환 리튬이온 이차전지 정극 Li($Mn_{1-\delta}$$M_{\delta}$)$_2$$O_4$의 전기적 특성)

  • 박재홍;김정식;유광수
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.466-472
    • /
    • 2000
  • As cathode materials of LiMn2O4-based lithium-ion secondary batteries, Li(Mn1-$\delta$M$\delta$)2O4 (M=Ni and Co, $\delta$=0, 0.05, 0.1 and 0.2) materials which Co and Ni are substituted for Mn, were syntehsized by the solid state reaction at 80$0^{\circ}C$ for 48 hours. No second phases were formed in Li(Mn1-$\delta$M$\delta$)2O4 system with substitution of Co. However, substitution of Ni caued to form a second phase of NiO when its composition exceeded over 0.2 of $\delta$ in Li(Mn1-$\delta$M$\delta$)2O4. As the results of charging-discharging test, the maximum capacity of Li(Mn1-$\delta$M$\delta$)2O4 appeared in $\delta$=0.1 for both Co and Ni. Also, Li(Mn1-$\delta$M$\delta$)2O4 electrode showed higher capacity and better cycle performance than LiMn2O4.

  • PDF